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EXECUTIVE SUMMARY

This report contains most of the two earlier interim reports, together with the most
recent results. In addition, there are three Appendices: a published paper, an abstract for
the Geostatistics Congress in 2000, and some new computer programs that have been
written for this project. The results of applying them will be provided in a possible new
program of work. A cokriging analysis of Korean temperature data with elevation has
been done to assess whether the accuracy of estimates of temperature could be
improved using the elevation. The improvement was small compared with the
temperature estimates for the USA done previously. The relation between temperature
and elevation was strong after both variables had been detrended. The maps show
slight differences as do the validation results.

A major aim of this project has been to examine the relation between geostatistics and
wavelet analysis for exploring spatial variation in imagery at different spatial scales and
data reconstruction. It seems that overall the wavelet analysis provides a more accurate
method for data reconstruction. However, it is not straightforward because the
reliability of the restored values when compared with the original data varies over the
region. Kriging performs less well where there are marked changes in the reflectance
values and they appear to be non-stationary. Kriging analysis, however, seems to be
more appropriate for exploring different resolutions of spatial variation that have been
identified by the variogram. The variogram could be used to make the wavelet analysis -
for different resolutions more efficient because the relevant scales could be targeted at
the outset. The results show that similar patterns of variation were retrieved by both
analyses for the long range/low frequency component.

A detailed analysis of ground cover at A. P. Hill has been done on the information from
three surveys (another survey was described in a previous report). The results show a
relation between the scales of variation in certain ground cover attributes and the SPOT
data: in particular grass, mixed woodland, forest and wetland. The multivariate
variograms of the quantitative data and the categorical data confirm a relation between
NIR and ground cover in terms of the spatial scales identified. Cross variograms
between the ground cover types and also between each type and each waveband suggest
that there are spatial relations among variables and the image data.

The analysis of the elevation data shows that the patterns in its variation correspond
closely with those for the NIR waveband. These results confirm our earlier
interpretation, in the previous project, that the observed changes in the long-scale
component of the variation coincides with changes in the physiography. The raw data
and detrended data were analysed, but there was little difference between the results.
Visually the relation between elevation and NIR is very strong, but it is more difficult to
show this statistically.




PART I: REPORT ON TIME SPENT WITH TEC PERSONNEL

This report embraces several different components and includes the material in the
previous interim reports. It begins with a brief summary of the work that was done by Dr
Oliver at TEC in February 1998 which was part of this contract (albeit slightly premature)
and July 1999, and the work done while E. Bosch and E. Shine were working with Dr
Oliver at Reading in September 1998 and May 1999, respectively. Part II of the report is a
small piece of work for Dr Krause on cokriging, Part IIl focuses on a comparison between
wavelet analysis and geostatistics, Part IV on the vegetation surveys and analysis of the
digital elevation model for A. P. Hill. There are three appendices to the report. The first is
a copy of the paper presented by Dr Oliver at the Geoenv’98 conference in Valencia last
year, and which has subsequently been published (Oliver et al., 1999). The second is the
abstract submitted to the Geostatistics Congress, and the third a set of computer programs
written by Professor Richard Webster to compute moving variograms, and moving
averages and variances. These will be tested in the next phase of the work.

The work for the majority of this project has been based at Fort A. P. Hill in northeastern
Virginia, about 75 miles from Washington, DC. The area is intensely dissected by many
small waterways, and this appears to have contributed to the pattern of variation observed
in the image.

Report of visit to TEC in February 1998

Much of the first day at TEC was spent discussing the results of the first analyses from
Fort A. P. Hill, and what other work should be done. In addition the paper that has now
been accepted by the International Journal of Remote Sensing was also discussed and
suggestions for improvement considered and incorporated. Since Dr Oliver was to brief
the senior management team at TEC including Dr Roper the contents of the briefing were
also ratified at the outset. A further paper on this subject was considered for presentation
at the Geoenv’98 conference in Valencia (Oliver ef al. 1999) and this has now been
published. (Appendix 1).

The main aim of this visit was to work with Jim Shine to enable him to make full use of
Genstat. A set of programs was prepared to cover exploratory data analysis (histograms,
box plots, summary statistics, trend detection and so on), variogram analysis and modelling
and kriging. All of the programs were examined. They were eventually compiled as part
of the aide memoire that formed an Appendix of the final report for the previous contract
(Contract N68171-97-C-9029).

Jim Shine and Dr Oliver worked though all of the programs. A problem was identified
with the kriging algorithm in Genstat which was eventually reported to the NAG library -
and corrected. TEC then received a new implementation of the package. At least half of
the time at TEC was spent instructing Jim in the use of the programs and interpreting the
results. In addition we had several discussions on geostatistics.

Half a day was spent on the briefing to Dr Roper and senior staff at TEC, and in answering
questions arising from this. During the course of our collaboration we have covered a
substantial amount of work and much of it was described briefly at this meeting. Dr Roper




showed considerable interest in what has been done and when he visited the University of
Reading in November 1998 it was clear that he had a sound appreciation of the value of
geostatistical analysis. The discussion that followed the briefing was stimulating and well
considered.

Other discussions were held with Edward Bosch about comparing wavelets and
geostatistics. This culminated with an arrangement for him to visit Reading in September
1998.

Visit by E. Bosch to University of Reading September 1998

Dr Oliver and E. Bosch worked together for a week. The time was used for analyses,

 interpreting results and discussion. Several analyses were undertaken - some of which
feature in the report. Others have been done by both of us subsequently. The visit was very
profitable to both of us. As a result of this investigation we have submitted an abstract to
the Geostatistics Congress to be held in April 2000, and this has now been accepted for
presentation and publication. The appendix is appended at the end of the report. The paper
will acknowledge the support of US Army and of TEC in this work, and will be authored
jointly by M. A. Oliver, E. Bosch and K. Slocum.

Visit by James Shine to University of Reading May 1999

Dr Oliver and Mr Shine worked together for a week in May 1999 when Mr Shine visited
the University of Reading. This time was used for analyses, a draft outline of a proposed
paper and discussion. Mr Shine wished to go over the analysis for computing the
variogram from large sets of data. We experimented with some of the 1-m data for A. P.
Hill using the program ggrid3.f, written for the project by Professor R. Webster. Mr Shine
wanted to develop his experience in this so that he can compute variograms from large data
sets within a short time. He left reading feeling confident about this. In addition we also
fitted models to the variograms with Genstat and again this reinforced what we did
together at TEC last year.

A considerable part of the week was spent discussing the results from the final report of
contract No. N68171-97-C-9029 which we now wish to publish. We examined previous
issues of the International Journal of Remote Sensing to see whether this was suitable for
this work. We decided that it was, but that as the content will be small compared with the
previous paper we shall submit it as a Lefter. This is confusing because this form of
publication is a short paper in essence and will suit our needs perfectly in this instance. An
outline of the paper has been prepared and the introduction written. We shall continue with
_this when Dr Oliver visits TEC in July. '

The remaining time was spent discussing the recent work on the ground survey data. Part
of this work is included in this report. However, there is still some way to go on this. We
also discussed future work. One idea is to compute a moving variogram to deal with the
problems of local trends or non-stationarity in the data. This arises at A. P. Hill for
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example where there are water bodies and areas of hard standing and buildings. The
computer code for this will be written as part of the current contract, but any testing of it
will have to be done in the future.

Report of visit to TEC in July 1999

Dr Oliver visited TEC in July 1999 for three days. On arriving she gave a short briefing to
Mr W. Clarke (head of section) on the status of our current research, how this builds on
work done in the past and where any future research is likely to develop. On the second
day Dr Oliver had a meeting with Dr Roper together with Mr Shine. This was to discuss
present work and also spatial investigations more generally. Dr Roper invited Dr Oliver to
give a general briefing to TEC next year on the research to date.

Part of each day was spent with Mr E. Bosch. We have been exploring a one-dimensional
set of radon values in soil where we know there are distinct boundaries. The aim is to see
how wavelet analysis deals with this variation and also that of the residuals from the
geological classes. We explored different levels of resolution for the raw data. This work is
still to be completed. :

The work with Mr Shine began by extracting part of the data from the SPOT image and the
digital elevation model (DEM). We plan to explore the relations in this smaller file in more
detail because statistically the relation between the wavebands and the DEM was weak, yet
it was fairly strong for the NIR band visually. The weak relation might arise from the areas
of hard standing and buildings which have no particular relation with the elevation. The
program ggrid.f would not work with these small files - Mr Shine has since discovered that
the zero origin has caused part of the problem.

We continued the discussion about the Letter for IJRS and have decided to use NDVI of
subsets from the whole site covered by the 1 m data. The additional work to prepare the
new variograms for this has now been completed.




Part II
Cokriging temperature data in Korea

The data for the analysis were provided by Dr P. Krause. They comprised temperature and
elevation records at 100 sites irregularly scattered over Korea. In addition elevation had
been measured at another 565 sites. Table 1 gives the summary statistics for these variables
at places where they were both measured. Both have distributions that depart from
normality, in particular. Although a geostatistical analysis does not assume that the data are
normally distributed it is generally advisable to transform the data to a near-normal
distribution for the variogram analysis to stabilize the variances.

Both variables were transformed to common logarithms and for elevation the skewness
decreased markedly and the transformed data are close to normal. Temperature departs less
so from a normal distribution, but after transformation to common logarithms the departure
from normality increases.

Table 1: Summary statistics for Elevation and Temperature

Elevation Temperature Log Elevation Log Temperature

Number of observations | 100 100 100 100

Mean 403 .45 53.02 517 397
Minimum 8.00 33.00 2.08 3.50
Maximum 4546.00 62.00 8.42 4.13
Variance 574928.23 2495 1.53 0.011
Standard deviation 758.24 4.99 1.24 0.103
Skewness 3.836 -1.45 0.21 -1.93

The data were also examined for trend as part of the exploratory data analysis. This would
generally be normal practice when one of the variables is elevation because it can vary in a
predictable way. However, in this case it was temperature not elevation whose variation
comprised a large element of trend. For elevation linear trend counted for 13.8% of the
variation, and quadratic trend for 21.0%. This is much less than expected. It is marginal as
to whether this degree of trend should be removed, but it was to ensure that the analysis
was reliable. For temperature the trend was much greater: a linear trend accounted for
74.9% of the variation and the quadratic one 77.9%. Clearly a linear trend model is
adequate for describing the trend for temperature.

The aim of this analysis was to assess whether temperature could be estimated more reliably
with the use of additional information from elevation. In geostatistics the method used is
known as cokriging. The value of the method is that it can be used to estimate a property
that is more expensive to measure using information from another variable with which it is
coregionalized and that is cheaper to measure or that does not change with time. This is
particularly true in general for temperature and elevation. There is a physical reason for their
relation and elevation does not change substantially in the short term. Therefore, once a
digital elevation model has been produced it is a source of inexpensive and reliable

|



information. Cokriging depends on the two (or more) variables being strongly correlated.
From the correlation matrix below it is clear that the correlation between elevation and
temperature is moderate.

Table 2: Correlation matrix for temperature and elevation in Korea.
*** Correlation matrix ***

Elevation 1 1.000
Temperature 2 -0.741 1.000

1 2
This level of correlation would suggest that it is worthwhile pursuing a coregionalization

analysis. The classical correlation coefficient does not take spatial location into account,
therefore the relation spatially could be either better or worse.

Cokriging: Theory
The cross variogram
This is the logical extension of ordinary kriging to situations where two or more variables
are spatially interdependent or co-regionalized. The first stage is to model the

coregionalization. The two regionalized variables, Z.(x) and Z\(x), denoted by # and v,
both have an autovariogram defined by:

7,() = 2 B2, - Z,(x+ W}']

and

7,(0) =2 BIZ,() - Z,(c+ )},
and a cross variogram defined as:
Y w()= %E[{Zu(X) -Z,(x+h)}HZ,(2)-Z,(x+h)}].

The cross variogram function describes the way in which u is related spatially to v.
Provided that there are sites where both properties have been measured v.,(h) can be
estimated by:

. 1 m(h)
V()= mé[{zu(x)—zu (x+h)}{z,(x) -z, (x+h)}].

which provides the experimental cross variogram for # and v.
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The cross variogram can be modelled in the same way as the autovariogram, based on the
linear model of coregionalization. Each variable is assumed to be a linear sum of

orthogonal random variables ¥ (x).

K 2
Z,(x)=2.>aY () +py,
k=1 j=1
in which
E[Zx)] = .

D ASE AN ACI AN
=g, (h), positivefork =k' andj = J'

=0 otherwise

The variogram for any pair of variables # and v is:

Yw)=2. D aa,g,(h).

k=1 j=1

We can replace the products in the second summation by b’ to obtain:

m®=§%&®-

The &) are the nugget and sill variances of the independent components if they are
bounded, and for unbounded models they are the nugget variances and gradients.

Cokriging

Once to coregionalization has been modelled it can be used to predict the spatial relations
between two or more variables by cokriging. There are generally two reasons for using
cokriging:

1. Where one variable is under-sampled compared with another with which it is
correlated. The sparsely sampled property can be estimated with greater
precision by co-kriging because the spatial information from the more intensely
measured one is used in the estimation. The increase in precision depends on the
degree of under-sampling and the strength of the coregionalization.

2. When values of all of the variables are known at all sample points, cokriging can
improve the coherence between the estimated values by taking account of the
relation between them.
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If there are V variables, /= 1,2,..., V, and the one to be predicted is », which in our case
has been less densely sampled than the others. In ordinary cokriging the estimate is the
linear sum:

2,8)= Y3 An(x,),

I=1 i=1

where the subscript / refers to the variables, of which there are V, and the subscript 7 refers
to the sites, of which there are »; where the variable / has been measured. The
A are the weights, satisfying:

"
YA=1 I=u; ad D 14,=0, I#u
i=1 i=1
These are the non-bias conditions, and subject to them the estimation variance of
Zu (B) for a block, B, is minimized by solving equations :

vV n
Zz/’lﬂyv, x,x;)+y, =7,(,,B) for all v=1,2 to V and all j=1,2 to n,.

I=1 i=1

The quantity yu(x;, X;) is the cross semivariance between variables / and v at sites 7 and j,
separated by the vector x;- x;; 7,,(xX,,B) is the average cross semivariance between a site j

and the block B, and v, is the Lagrange multiplier for the vth variable. The cokriging
variance is obtained from:

Vv on
O-lf(B) = Zzﬂ‘ﬂful(xjaB)—l- V/u _}-;uu(B,B)

I=1 i=1

where 7, (B, B)is the integral of 7, (h)over B, i.e. the within-block variance of u.

Analysis and results of cokriging
Cross variogram

The experimental autovariograms for the raw values of elevation and temperature were
computed first. They showed some similarity in their shapes and also ranges of spatial
dependence (Figure 1). The autovariograms were then computed on the residuals from the
linear trend for temperature and on the residuals from the quadratic trend for elevation. In
addition the elevation was transformed to common logarithms and the variogram was also
computed from the transformed data. Considering that the level of skewness is substantial




reducing it appears to have had little effect on the variogram. In fact it is less clearly
bounded and less related to the variogram of temperature than that for the raw data. The
variograms computed from the residuals were more erratic and more difficult to model
than those of the raw data. Since the trend appears to be regional in the case of
temperature, at the longer lags, I decided to do the analysis on the raw data and the
residuals. For kriging it is the first few lags that are important and these are less likely to be
affected by the trend than the longer lags.

Although it is important to check the data in this way, the changes did not appear to
improve the variogram substantially. This will become evident when the cokriging results
are discussed. However, cokriging was carried out on the raw data and the detrended data.
During the remaining time on the project I might do some further tests, but I do not expect
any major changes.

The experimental auto- and cross-variograms for the raw data are given in Figurel. They
have a similar form and the individual autovariograms were fitted best by an exponential
model with a distance parameter of about 0.86 units. The same form of model must fit all
of the variograms and the range or distance parameter must be the same. The nugget
variance, the sills of bounded models and the slope of unbounded models can be different.
The coregionalization was modelled by an exponential function with a distance parameter
of 0.86 units of latitude and the lower triangle of the sills is given below. The
coregionalization of the residuals for elevation and temperature were also modelled and the
values used for kriging. The variograms for the residuals were fitted best by a spherical
function with a range of 1.01 units of latitude.

Table 3: Models of coregionalization fitted to the raw data and the residuals from the
trend for temperature and elevation.

Fitted sills in lower triangle for the raw data Fitted sills in lower triangle for
the residuals

Nugget 0.0 Elevation 0.0 Nugget

Variances 0.0 0.6 Cross Temperature 0.0 1.4 variances

Sill 350826.2 Elevation 258385.0 Sill

Variances -1169.6 63 Cross Temperature -821.4 2.6 variances

mﬂg———g—————————————}
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Figure 1: Experimental autovariograms of a) temperature and b) elevation, and c) the
experimental cross variogram .
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Figure 2 shows the experimental cross variograms, the fitted models together with the hull
of perfect correlation (the two outer lines). The cross variogram of the residuals coincide
with the hull showing a strong correlation. That for the raw data is close to the hull.

a)
Temp v Elevplion
m-
o 7
e
=) 0
2 .,
» *
—uE * .
@ a5 1 15 20
Log /m
b)

Ternp ¥ Elev residugls

Votlance

~501

Figure 2: a) Cross variogram of the raw data and b) cross variogram of the residuals, with
the hulls of perfect correlation.
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Cokriging

The first analysis was to test the modelling and to assess the effects on the estimates of
using either the raw data or the residuals. Twenty five of the 100 sites were removed from
the raw data and the residuals. Using the models of coregionalization given above the
values at the 25 validation points were estimated by punctual cokriging for the raw and
residual data, respectively. In addition the raw data were used for autokriging the
validation points. The original values, the estimates and the standard errors are given in
Table 2.

For every validation point the cokriged estimate has a smaller standard error than the
autokriged estimate. The differences are small, but they show consistently that cokriging
confers a small benefit in terms of estimating temperature more reliably. In addition the
estimates are consistently closer to the original values for cokriging of the raw data. For
the residuals the standard errors from cokriging are smaller for 15 of the 25 validation
points. This was somewhat surprising in relation to the fact that the variograms of the
residuals did not appear to be an improvement over that of the raw data. For the residuals
the trend was added back so that the values could be compared with the raw data. The
estimates are not as consistently good as they are for cokriging with the raw data.

Table 4: Comparison between the raw temperature data, the autokriged estimates and the
cokriged estimates, and the cokriged estimates for the residuals and with the trend added
back.

Original Autokriging Cokriging Cokriging residuals

X Y Value Estimate SE Estimate SE Estimate Est+trend SE
-127.05 3790 54.0 53.33 248 53.32 2.43 0.5392 5348 240
-127.10 37.70 54.0 5435 1.73 5425 1.67 0.8142 53.71 191
-126.50 33.50 600 60.03 1.63 60.07 1.56-1.3596 5838 1.82
-128.10 3520 57.0 57.19 2.19 5736 2.12-0.0677 5796 216
-127.75 3790 53.0 53.86 1.55 53.64 1.49 0.5506 53.74 1.79
-128.00 3620 54.0 55.17 4.09 55.13  4.08 -0.4151 56.08 3.84
-126.60 37.50 540 53.17 2.63 53.24 2.60 0.3207 54.11 2.57
-12890 37.10 480 54.50 4.52 5447 4.51-0.0800 5576 4.03
-129.40 37.00 550 55.01 5.43 5501 542 0.1675 5691 431
-126.75 3430 580 5836 5.29 5833 5.28-0.5767 5826 4.30
-127.65 37.45 560 53.82 299 5375 2.97 0.2831 54.34 2.84
-125.65 39.60 50.0 49.56 4.68 49.63 4.66 0.2680 49.52 4.02
-129.01 35.10 59.0 5795 196 57.87 1.93-0.5659 5847 2.09
-124.80 4045 490 49.22 473 4936 4.72 0.6924 48.36 3.86
-128.30 41.80 33.0 4268 471 4271 4.68-2.469 4090 3.72
-128.60 3590 57.0 56.81 1.71 56.80 1.63-0.0015 57.47 1.83
-126.50 36.75 54.0 53.60 3.01 53.22 2.97-1.7979 5347 274
-127.10 37.45 540 5494 193 5489 1.89 1.0006 54.88 2.10
-12820 3640 580 54.79 3.35 5476 3.33-0.4044 5591 3.15
-127.95 3740 53.0 53.25 0.98 53.30 0.93 0.1380 5447 1.53
-129.40 36.03 580 56.87 150 56.92 1.43 0.5288 5885 1.69
-124.65 38.00 520 5197 166 51.68 1.60-0.4415 53.86 1.81
-126.40 34.80 580 5745 5.02 5754 5.00-0.6245 57.73 3.94
-125.80 39.25 51.0 49.95 4.83 50.00 4.82 0.1461 50.22 4.18
-130.40 4230 450 4726 634 4738 6.33-0.3178 4531 4.23
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The entire data set was cokriged as above, but this time using all of the elevation data. The
estimates and the standard errors were mapped, Figures 3 to 5. Figures 3a and 4a show the
maps of ‘temperature from autokriged and cokriged estimates, respectively. There is
remarkably little difference between them. Figure Sa shows the results of cokriging using
the residuals and then adding the trend back. This is more different. This appears to show
some distortion, however, it is difficult to be certain because we did not have the outline of
Korea to superimpose on the estimates. This will be done at TEC. Figures 3b, 4b and 6b
show the standard errors for temperature. They are slightly less for cokriging. These values
show the pattern of sampling and also the coastline of the country.
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Ordinary kriged estimates of temperature for Korea

37.

13000 -129.00 -128.00 -127.00 -126.00 -125.00

Standard errors from ordinary kriging of temperature for Korea

42.00

13000 -129.00 -12800 -127.00 -126.00 -125.00

Figure 3: a) Map of estimates from autokriging of temperature for Korea,
b) map of the standard errors from autokriging of temperature
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Cokriged estimates of temperature for Korea

37.

430,00 -129.00 -128.00 -127.00 -126.00 -125.00 -124.00

-131.00

Standard errors from cokriging temperature for Korea

131,00 -130.00 -129.00 -128.00 -127.00 -126.00 -125.00 -124.00

Figure 4: a) Map of cokriged estimates of temperature for Korea,
b) map of the standard errors from cokriging of temperature.
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Cokriged estimates of residuals of temperature with trend added back for Korea

-131.00 -130.00 -129.00 -128.00

Standard errors of residuals from cokriging temperature for Korea

Figure 5: a) Map of the cokriged estimates of the residuals for temperature with trend added back for Korea,
b) map of the standard errors from cokriging the residuals of temperature.
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PART HI: Comparing wavelets and kriging for exploring nested scales of variation

M. A. Oliver and E. Bosch

This work has continued to use part of the SPOT image around Anderson Camp. However,
it is slightly different in extent from that used previously to accommodate the wavelet
analysis. To apply the discrete wavelet transform we need the rows and columns of the
area to be analysed to be some power of 2; the area chosen was 2" x 2" = 128 x 128. Asa
result the variogram analysis and factorial kriging had to be redone so that the results relate
to this new region and are comparable with the subsequent wavelet analyses. The theory .
of factorial kriging was given in the final report for Project 3 (Contract number N68171-
97-C-9029). As an addendum to this report the paper presented at the geoENV98
conference is appended and this includes the theory of factorial kriging. The application
and theory of wavelets is only summarised briefly here.

Summary of wavelet analysis

Wavelets have some similarities with the windowed Fourier functions. Both of them have
their energy well localized in time. This means that these functions decay rapidly in time
or space, i.e. they go to zero fast, throughout the whole real/complex line. However, they
can also have compact support, they are non-zero in a finite interval. In addition, the
respective Fourier transforms of these functions have their energy concentrated about a
small set of frequencies. An advantage of the wavelet transform over the windowed
Fourier transform is that low frequency and high frequency resolutions can be
characterized simultaneously. This means that wavelet analysis is suitable for situations
where there are different levels of resolution of variation superimposed on each other
(Daubechies, 1992). Wavelets are also good for describing transient data, whereas the
Fourier transform is not. Wavelet analysis is not affected by local non-stationarity and this
is an advantage it has compared with geostatistics, which assumes that the data are at least
quasi-stationary (i.e. locally stationary). Local non-stationarity can arise where there are
marked boundaries that result in a marked change in the local means of the variable of
interest (see Part V of this report).

Wavelets are oscillatory components that operate locally. The wavelet analysis starts with
the choice of a mother wavelet, w(¢), which is fixed. The mother wavelet can be dilated or
shrunk to examine components in the variation that occur at different spatial or temporal
scales. This enables multi-resolution analysis where different levels of variation are
superimposed on one another (Mallat, 1998). This is our first aim in this investigation.
The second relates to redundancy, which is a major problem with image data because of
the amount of information involved. Wavelets are also of great value for data compression
because they are able to remove redundant information and to retain the important
structure of the data.

Theory

Wavelet analysis allows a signal (information) to be represented in terms of a set of basis
functions, ie. basis vectors or kernels. The basis functions are a set of linearly
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independent functions that can be used to produce all admissible functions of f#) (Strang
and Nguyen, 1996). Choosing the basis functions determines the kind of information that
can be extracted. Thus, a function f{7) can be expressed as

F@) =222 bawal(t) (1)

where by, is the wavelet coefficient and wy,(?) is the wavelet at scale s, translated by u. A
special feature of the wavelet basis is that its elements w;,(f) are constructed by scaling and
translating a single mother wavelet w(?):

Wa(l) =w(t] 2° —u)l 2°'° )

Using Fourier techniques, Mallat (1998) shows how to construct a wavelet function w(t).
The wavelet function w(t) is constructed from a scaling function #(t) which can be
specified by a discrete filter I[n]. This means that you can obtain the discrete filter 1{n]
from the scaling function #(t) or you can obtain the continuous function #(t) from the
discrete filter I[n]. The proofs are not trivial but he provides a thorough explanation.
Associated with the wavelet function w(t) is a discrete filter h[n]. The filter 1[n], associated
with the scaling function ¢(t), is a low pass frequency filter while the filter h[n] , associated
with the wavelet w(t), is a high pass frequency filter. The low pass filter smoothes the
signal while the high pass filter retains the detail in the signal. This is no coincidence since
these are the properties that are sought in the construction of such filters and functions.
Furthermore, it is these filters, and not the continuous functions themselves, which are used
to compute the Discrete Wavelet Transform. That is, the results obtained by convolving a
signal with these filters are the same as those obtained by convolving the signal with the
continuous functions. This is a remarkable feature since the filters consist of a smaller
number of elements, thus reducing the amount of computation.

As was mentioned above, some wavelets have compact support. Mallat (1998) shows that
the scaling function #(t) has compact support if and only if the discrete filter 1[n] has
compact support. Furthermore, their support is equal. Also, if the support of ¢(t) and 1[n]
is [N,Nz], then the support of the wavelet function w(t) is [(N1-N2+1)/2,(N2-N1+1)/2].

Wavelets can be orthogonal which implies that

|7 waltywsy (i =0 3)

This means that the above integral will be zero when s # S or # # U. That is, (3) will be
zero at different scales s or translates # of w(t). Also, when s =S and # = U, then (3) is
equal to 1. This leads to a simple formula for each coefficient bsyin the expansion of f7).
The expansion in equation (1) is multiplied by w,x and integrated by:

[ 1w @at =g, | (w0 at @

All other terms disappear because of the orthogonality. Mallat (1998) shows how the
components by, are computed with the discrete filters 1{n] and h[n] .

- . . A ___,_
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A wavelet needs to satisfy the following condition

+0
fw@®dt=0 5)

—Q0

for perfect reconstruction. That is, equation (5) needs to be satisfied to be able to
reconstruct exactly f{#) from the Forward Wavelet Transform.

Multiresolution

The dilation of the mother wavelet w(f) allows us to analyse the signal at different levels of
resolution. Again, instead of using the scaling function and the wavelet function to
compute the discrete wavelet transform of a discrete signal f{n), we use the two filters
described above, low pass 1[n] and high pass h[n] . We assume that the number of samples
of the signal f(n) is a power of two. To obtain the first level of the multiresolution
decomposition of the signal f{n) we do as follows:

We apply the high frequency filter h[n] to the signal f(n). This portion of the transform
contains the fine detail structure of the signal. That is, h[n] filters out the smooth
segments of the signal and retains the sharp transitions or discontinuities of the signal. The
dilations and translations of the continuous wavelet transform, are reflected in the discrete
filters 1[n] and h[n] as decimation and translation, respectively. Thus, each filter produces
half the number of sample points as those of f{in). Since we are dealing with a finite
number of sampling points, we can express the application of the filter h[n] to the signal f,
= f(n) in terms of matrix and vector notation fh; = Hyfy, where Hj is a matrix whose rows
comprise the elements of the filter h[n] and f; is the vector containing the elements of f{n).
When this has been done, we then apply the low frequency filter I[n] to the signal f(n),
whose purpose is to smooth the signal. When the filter is applied to the signal, the sample
size is reduced to half the number of sampling points in f{#7). Similarly, we can express the
application of the filter 1[n] to the signal f{) in terms of matrix and vector notation fI; =
Lyfo, where Ly is a matrix whose rows comprise the elements of the filter 1[n] and f5 is the
vector containing the elements of (). Note that with this notation, H refers to high
frequency and L refers to low frequency. These two sets of high fk; and low fI; frequency
components comprise the first level of the multiresolution decomposition of the signal f{n).
Since these filters (wavelets) are orthogonal, we can obtain f{n) from fh; and from fI; by
the following:

fo=f=H1(fh1) + Ly (fl)) = Hy (Hyf) + Ly (Lyf), (6)
where H; and Ly are the transpose matrices of Hy and L respectively. This means that

H; (Hyf) + Ly (Lyf) = (Hy Hy)f + (Ly Lo)f = (Hy Hy + Ly Ly)f
=1f=f, ™
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where I, is the identity matrix of order corresponding to the size of the original signal f{(n).

To obtain the second level of the multiresolution decomposition of the signal f{n) we do as
follows: :

The same two filters h[n] and I[n] are now applied to the reduced resolution signal fI;. We
leave the first high frequency resolution level components fh;untouched. Recall that the
sample size of fI; is half that of fp. In matrix notation, when applying the filter h[n] to fIs,
we have the high frequency component of fl; in fh2 = Hafl; and the low frequency
component of fl; in fl; = Lofl;. Again, since the filters are orthogonal, we can obtain fI;

from fh; and from f1; by the following:

Sl =8y (fh) + Lo (fl2) = Hy (B 1) + Lo (Lo /1), ®
which means that

L=HH+L L, ©

To compute the subsequent multiresolution levels, we proceed in this fashion by applying
the low and high frequency filters to the previous set of low frequency components. Since
f(n) has a finite sample size, we can only perform this decomposition a finite number of
times. Suppose the signal f{1) has 2* = 16 sampling points. Then this decomposition has 4
steps. The resolution levels can be labelled as follows:

[(ﬂ“): (’h“): (fh3)7 (th), (fhl)]s (10)

where (fh;) has 8 sample points, (fh2) has 4, (fhs) has 2 and both (fh,) and (fl;) have 1
sampling point each. Each Hj,fl; contains high frequency information of f{n) but at a
reduced resolution (grosser scale). This analysis allows us to examine features locally and
at different scales. Note that we can reconstruct perfectly f{#) from

[(f1), (fha), (fhs), (fh2), ()] since h[n] and 1[n] are orthogonal filters.

At a given resolution, the scaling functions #(t/2° - u) form a basis for the set of admissible
signals. The level is set by s, and the steps at the level are 2°. The detail at the level s is
represented by the wavelets w(t/2° - u). Multiresolution divides the frequencies into octave
bands, from w to 2w, rather then different frequencies.

From this analysis, to invert from a grosser resolution to a better resolution Mallat (1998)
represents this as follows:

signal at level s+ 1 (local differences) N
+ signal at level s
details at level s + 1 (local averages) 2

Note that as s increases, the details in the signal are further degraded or washed out. Using
this notation and the transform coefficients of the example in (10), to obtain fI5 from fls
and fhy we do the following;

(Hy'fhe) + (Lafly) = (HeHyfls) + (La'Lafls) = fls.
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Thus the signal, such as the NIR information from an image, can analysed at different
resolutions by the wavelet transform. The coefficients provide us with a measure of the
energy the basis vector has at time ¢ and/or scale s. The discrete wavelet transform
decomposes the signal into a set of high and low frequency components which correspond
to the coefficients of the dilated and translated basis functions w(t) and #(t) respectively.
The high frequency component wavelet-coefficient wf{s,u), provides a measure of the
variation of f in a neighbourhood # whose size is proportional to s. This measure of
variation in smooth signals is negligible while the variation tends to be significant in
signals with jump discontinuities. Furthermore, increasing the dilation parameter s while
filtering the signal produces a larger region of integration, which in turn smoothes the
signal further. That is, less detail and lower frequencies are obtained as the dilation
parameter increases. On the other hand, decreasing the dilation parameter s in the
convolution process, generates smaller windows of integration allowing more detail and
higher frequencies to come through.

There are many different kinds of wavelets (adaptive, continuous, discrete, orthogonal,
biorthogonal, real and complex), the most simple being the Haar. Nevertheless, those of
Daubechies (Daubechies, 1988) have been used quite often since they first came out.
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Analysis of the A.P. Hill data
SPOT Image

The part of the scene covering Fort A. P. Hill, Figure 6, is slightly smaller than that used
before (see report N68171-97-C-9029), but it covers the same part of the image. Analyses
were carried out on the complete data set and on sub-samples of 1 pixel in 2 for each
column and row (or 1 pixel from a block of 4), 1 pixel in 4 for each row and column (1
pixel from a block of 16), and 1 pixel in 8 for each row and column (1 pixel from a block
of 64 pixels). The sub-sets were used to assess the accuracy of data reconstruction by the
two methods. Table 5 gives the summary statistics for the full data set.

Table 5: Summary statistics for NIR for the 128 pixels by 128 pixels region of Fort A. P.

Hill

Statistic NIR Hermite

polynomials of NIR

Count 16384.0 16384.0
Minimum 37.00 -4.496
Maximum 183.00 4.009
Mean 117.83 0.0287
Variance 268.99 0.9995
Standard deviation 16.401 0.9997
Skewness -0.7408 -0.0943
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Figure 6: Pixel map of the near infra read (NIR) of part of the SPOT image (128 by

128 pixels) for Fort A. P. Hill.
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Wavelet analysis

The method of wavelet analysis that Edward Bosch used was that of Daubechies
wavelets (Daubechies, 1988). The size of the image was 27x 27 ie. 128 rows and 128
columns of pixel information for the NIR waveband. This region chosen from the part
of the SPOT image that we analysed and described in the previous report (1998), and
the size was such to avoid any need to pad the data to create appropriate resolution
levels for the wavelet analysis.

The wavelet transform was done with a pair of filters and not the wavelets themselves.
The two-dimensional wavelet transform is separable which means that we can apply
the filters in the horizontal direction and then in the vertical direction to obtain the
desired results. As we described above, the convolutions can be represented in terms
of two matrices L and H. The matrix L is made up of shifts of the low frequency filter
I[n], and H is made up of shifts of the high frequency filter h[n]. These shifts force
every other point in the output of each convolution to be discarded (decimated).

In this study we used Daubechies 6-component wavelet filters. This wavelet satisfies
three orthogonality conditions and three vanishing moments. The orthogonality
condition implies that the filter is orthogonal to its shifts by two. Increasing the
number of vanishing moments of the wavelet and its filter, forces the wavelet to be
smoother (continuous and differentiable), but at the same time it increases the support
of the wavelet and the number of sampling points in the corresponding filters.

As we mentioned above, the wavelet-coefficient wf(s,u) provides a measure of
variation of the signal f{#) at s and u. The smoother the signal, with three vanishing
moments, the high pass filter zeros out the low frequency content in the signal leaving
behind little information. Since the high pass filter h[n] is designed to discard a certain
amount of information, which depends on the number of vanishing moments, the low
pass filter I[n] thus must retain most of the ‘energy” or information.

Given that the image used is 128 rows by 128 columns in size (2’ x 27), using Mallat’s
scheme, the original resolution level is 0. Applying the discrete wavelet transform
(DWT) to the data once produces high and low frequency components at resolution
level 1. This results in four quarter sets of data of size 64 by 64 pixels. The first
quarter of the data represents in essence a sample of 1 in 2 of the rows and columns of
the data matrix. This quarter contains the scaling coefficients which correspond to the
low pass filter. The other three quarters contain the wavelet coefficients which are high
frequency: quarter two contains the vertical coefficients, quarter 3 the horizontal ones
and quarter 4 the diagonal coefficients.

For this analysis the low and high frequency components were used separately to
assess their overall contribution to the original image and to analyse the effect this had
on the variogram of the original image. That is, we computed the inverse wavelet
transform at several levels with only the corresponding low frequency components.
Also, we computed the inverse wavelet transform at several levels without the low
frequency content.
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Geostatistical analyses

The variogram was computed and modelled as usual using the smaller data set with a
total of 16 384 pixels, Figure 7. This variogram was then used with the pixel
information to filter the information by factorial kriging into the long-range and short-
range components. Ordinary kriging was used to estimate the values of NIR at
positions where pixels had been removed from the data. In other words the estimates
coincided with the locations of the original values so that 2 direct comparison could be
made between the estimates and these.

Results

The variogram for the new data is still a nested structure, but the correlation ranges are
smaller than for the larger part of the scene that we investigated before. The model
fitted was a nested spherical function with two structures. Since the variogram was
somewhat wavy at the longer lags, to improve the fit T modelled it to a lag of 40 only.
The short-range structure was 6.6 pixels or 130 m and the long-range structure was 21
pixels or 420 m. The experimental variogram (points) and the fitted model (line) are
given in Figure 7 a. The parameters of the models fitted to 100 and to 40 lags are given
in Table 6. Since the data were skewed I transformed them using Hermite polynomials
and computed the variogram from the transformed data, Figure 7 b and Table 6. There
was little difference from the raw variogram, therefore, I did the analyses on the raw

data.
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The variogram suggests that there are two clear scales of spatial variation present. one
of about 120 m and the other of about 420. This is also evident in the pixel map of the
ordinary kriged estimates, Figure 8. There is local detailed variation superimposed on a
broader pattern of variation. The major large structures in the variation that are evident
appear to be related to major relief forms: the drainage basins and the intervening
spurs, and the major types of ground cover. Short-range variation is also evident
related to the water bodies, buildings and the more local changes in ground cover and
drainage. These were described in the previous final report.

Table 6: Model parameters for the variograms computed for the 128 by 128 pixel area

of the SPOT image

Variable Model type | Nugget | Sill(1) Range(1) | Sili(2) | Range(2)
variance | variance | pixels (m) | variance | pixels

(m)
NIR Nested 13.2 85.1
(100 lags) Exponentia 0 227.0 (264) 440 (1701.6)
1

NIR Nested 6.46 21.11

(40 lags) Spherical 0 152.2 (130) 91.71 (420)

Hermite Nested 6.21 19.45

polynomials | Spherical 0 0.5240 | (125) 0.3755 | (390)

Long-range 17.2

component Circular 0 113.9 (544)

Short-range 430

component Spherical 0 87.9 (86)

Low frequ Nested 8.40 222

-ency 1in2 | Spherical 0 146.7 (168) 74.82 (444)

High frequ

-ency 1in2 | Pure nugget

High frequ 2.944

-ency 1in4 | Circular 0 41.7 (58.88)

High frequ 6.690

-ency 1in8 | Circular 0 68.30 (133.8)
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Factorial kriging and wavelet analysis enable the different spatial scales to be separated in
theory. For factorial kriging this is controlled by the variogram which describes the variation
present in the data. For the wavelet analysis this is controlled by the resolution level, which
in turn is controlled by the octave bands and as a consequence is more arbitrary. One aspect
of future research is to consider how the variogram could be used to guide the factoring
process that controls the wavelet multiresolution analysis.

Figure 9 is a pixel map of the kriged estimates of the long-range component of the variation
filtered using the variogram. The large scale variation is related to the main relief features.
The band of dark colours in the North and central part of the map are damper and wetter
areas, and the lighter ones the spurs, upper slopes and built areas. This map could be used
effectively to guide future sampling. If the end-user is interested in retrieving this level of
information then a suitable sampling interval can be chosen using the range of the
variogram. A sampling interval of 200 m would be adequate to ensure that this resolution
of variation is identified.

The pixel map of the short-range variation (Figure 10) shows the detail that is also evident
in Figure 8, but less clearly so. The lakes are recovered well by this resolution. The dark
patches in the bottom left hand corner (1 to 20 on the x-axis and 55 to 60 on the y-axis), in
the central area (64 to 90 on the x-axis and 115 to 125 on the y-axis), and at the top of the
map (45 to 70 on the x-axis and 158 to 180 on the y-axis). The road running N-S is also
evident extending N along longitude 100 (on this map). The other short-range structures
probably relate to changes in local drainage conditions and vegetation. For many surveys
recovering this intensity of variation at a scale of about 120 m would require too much
sampling. A sampling interval of 50 m to 60 m would be needed to resolve this short-range
variation. If a sampling scheme of about 200 m were recommended in relation to the long-
range variation this information on short-range variation would be lost. These maps enable
us to demonstrate to the end-user the extent of information that is likely to be lost by
adopting the coarser sampling. Sampling between 60 m and 200 m would be of little benefit
because most of the short-range variation would not be identified and sampling at less than
200 m would be inefficient to identify the long-range variation. Variograms were computed
from the estimates of the long-range (Figure 11 a) and the short-range (Figure 11 b)
components. They recover the spatial scale of the variation quite well, but both variograms
were difficult to model satisfactorily.

For the first wavelet analysis the level of resolution was 1. The coefficients were derived as
described earlier. The low frequency and the high frequency coefficients were reconstructed
by the inverse wavelet transform, which restored each of the 64 by 64 sets coefficients to
the size of the original data set. These are shown as pixel maps and should be compared
with the appropriate kriged and the filtered maps, Figures 8 to 10. In addition variograms
were computed for each of these four reconstructions: one low frequency (Figure 12 a) and
three high frequency ones (the one is shown in Figure 12 b is the average as they were
similar). '

The low frequency reconstruction, Figure 13, is very similar to the ordinary kriged output
for the image, Figure 8. It is important to remember that the ordinary kriged
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Figure 9: Pixel map of the long-range component of the variation in NIR of part of the
SPOT image (128 by 128 pixels) for Fort A. P. Hill
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Figure 10: Pixel map of the short-range component of the variation in NIR of part of
the SPOT image (128 by 128 pixels) for Fort A. P. Hill




-

31

a)
Long—range component
140-
120
Chkteddiep,
100
[<B}
S 80-
.S
S 607
=
R A
*
204 /s
O i ] i
0 10 20 30
Lag Distance/pixel
b)
Short range component
100y "
Fhoy k¥
80- el
S 60
[an
.S
S 40-
20
0 i T
0 10 20

Lag Distance/pixel

Figure 11: a) Variogram of the long-range component, and b) variogram of the short-
range component of the variation in NIR of part of the SPOT image (128 by 128

pixels) for Fort A. P. Hill




32 l
a)
300- l
250 '
200- '

)

O

[
.2 150 l

S

>
100+ ' .

501
0 T T T 1 l
0 10 20 30 40 :
lag distance/pixel i
b) | | |
High frequency 1 In 2 |
100 A '
N i
© H
= !
2 507 .
o ;
= ‘i
x * x * o * *- * - - I
%
0 T T T T T ' li
0 2 4 6 8 10
Lag Distance/m

i
Figure 12: a) Variogram of the low-frequency component, and b) variogram of the average !
of the high-frequency components for NIR of part of the SPOT image (128 by 128 pixels) i
for Fort A. P. Hill from a wavelet analysis at a resolution of 1 in 2 j




33

map was made from estimates using all of the data, whereas the low frequency wavelet
reconstruction used the 1 in 2 sample, i.e. 25% of the original data. Both the long- and
short-range components of the variation are evident, although there has been some loss
of detail in the short-range variation. For example the road is less clear in Figure 13
than in Figure 8. The variogram computed from the low frequency reconstruction,
Figure 12 a, was very similar to the variogram of the raw data, Figure 7 a. Hence the
spatial structure at both scales has been retained at this level of resolution. The most
surprising finding was that related to the high frequency reconstruction. The map of
the high frequency component (Figure 14) does not appear to reflect the kind of
variation present in the map of the short-range component from factorial kriging.
However, when we examined them in detail there is some weak evidence of the lakes,
which are so clear in Figure 10. The variograms computed from these data are pure
nugget, as shown in Figure 12 b. This means that the high frequency components are
noise at this level of resolution; they contain no spatial structure. The latter is all
retained in the low frequency reconstruction.

To determine whether we could retrieve the long- and short-range components using
wavelets we explored the next resolution, 2, in effect a sampling of 1 in 4 (or 1 pixel in
16). Figure 15 shows the low frequency reconstruction. There is still long- and short-
range variation evident, although the short range variation is becoming less distinct; for
example the road and the lakes are still visible but their margins are less clearly
defined. Figure 16 shows the pixel map for the average of the high frequency
reconstruction and it is clear that there is more of the short-range component of the
variation evident. The variogram of the high frequency reconstruction now shows
some structure, Figure 17 a. Table 6 gives the model parameters of this variogram.

The low frequency reconstruction of the 1 in 8 resolution 3 now shows the long-range
component of the variation identified by factorial kriging, Figure 18. This resolution is
fairly close to the short-range component of the variogram, i.e. 6.5 pixels, and this
level of variation appears to have been filtered out now. So it seems that once the
resolution of the short-range structure has been reached the effect was to remove the
short-range variation. The map, Figure 19, of the high frequency reconstruction now
shows some of the features evident in the kriged map of the short-range component of
the variation. In particular the lakes are evident. The variogram computed from the
average of the three high frequency reconstructions, Figure 17 b, shows clear evidence
of structure and the range of spatial correlation described, 6.69 pixels, is close to the
short-range component of the variogram of the original data.

Summary

It is clear that factorial kriging works well with multiresolution data. The main reason
for this is that the filtering is controlled by the variogram which is a function of the
data being analysed. It is a valuable method for directing future sampling for ground
surveys because it can show what degree of variation is likely to be recovered. The
multiresolution analysis using wavelets produces a different outcome. At the first
resolution the high frequency components remove the noise, i.e spatially uncorrelated
variation, but none of the short-range variation is resolved. At the subsequent
resolutions close to the short-range component in the variogram the high frequency
wavelets recovered the short-range variation, especially at level 2, evident in Figure 10.
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10. To recover the long-range component of variation it seems that choosing a
resolution near to that of the short-range component identified by the variogram is an
effective way of avoiding several iterations of the wavelet analysis. Once the scales of
variation have been identified by the variogram the choice of wavelet coefficients
retained can be optimized. This presents an interesting consideration for further work.
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Figure 19: Pixel map of the average high frequency reconstruction from the wavelet
analysis of NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a
resolution of 1 in 8
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Data reconstruction

The 128 by 128 pixels were sampled by taking one pixel in every two for each row and
column (or a sample of 1 in 4) which matches resolution level 1 in the wavelet
analysis, one pixel in every four for every row and column (or a sample of 1 in 16), a
wavelet resolution of 2, and one pixel in every eight for each row and column (or a
sample of 1 in 64), a wavelet resolution of 3. The low frequency wavelet coefficients
were inverted to reconstruct the image as before. Kriged estimates were made to
coincide with the original data points for each data set using the variogram model from
the full set of data. These maps are all shown as pixel maps.

To evaluate the accuracy of the estimates by the wavelet reconstruction and kriging
every value was compared with the original values of NIR. First the differences were
calculated between the estimates and original values for both analyses and for the three
sub-samples, and these are shown as pixel maps (Figures 21 and 22, 26 and 27, 31 and
32). The statistical distribution of these differences or errors has also been determined
and these are shown as histograms (Figures 23, 28 and 33). In addition the mean
squared differences or mean squared error (mse) was calculated (Table 4).

Results

The results were not entirely what we expected and we have been making sure that the
kriging program and analyses have been correct. From the theory of geostatistics we
should expect that the kriged estimates would have the smallest mse, but they do not
for any of the analyses. It was this that led us to explore the differences in more detail
to try to gain insight into the results from the two methods. In spite of the fact that the
forward and inverse wavelet transform are linear operators, reconstructing the data
with only some of the wavelet transform components is not done in a linear setting.
Mallat (1998) says, “It is often easy to find a basis that produces a smaller non-linear
error than a Karhunen-Loeve basis, ...”. Although in this study we are not using the
Karhunen-Loeve transform (principal component analysis), some methods will provide
smaller errors than others depending on the model used.

Sampleof 1in2

The pixel maps for the low frequency wavelet reconstruction and kriging from the 1 in
2 data, Figures 13 and 20, respectively appear to be very similar to each other. The
slight “spottiness’ evident on the kriged map is because punctual kriging was used and
this is a true estimator returning the value at the data points. Table 7 gives the mean
squared errors for both methods. That for the wavelets is less. The maps of errors or
comparisons, Figures 21 (wavelet) and 22 (kriging), show a similar pattern in general.
However, the differences between them help to explain why the mse is greater for the
kriged estimates than for the wavelet reconstruction. There are large differences
associated with the lakes where there are clearly marked local changes associated with
boundaries in the variation. This is evidence of local non-stationarity which violates
the assumptions of kriging. Wavelets are known to be suitable for dealing with local
non-stationarity, and these results support this. Kriging has the largest absolute
differences and there are more of them than for the low frequency wavelet
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reconstruction. However, compared to the number of pixels in the data these larger
differences are few compared with the many much smaller differences for the majority
of the estimates.

To explore the reasons for the results in more detail the histograms of the differences
were examined. Figure 23 a and b are the histograms of the differences for the wavelet
and kriging analyses, respectively. It is clear that punctual kriging, which is a true
estimator at the data points has a larger number of small errors than the wavelet
analysis. However, this is not consistent as the number of data points retained is
reduced.

Sample of 1 in 4

Figure 24 shows the result of kriging this sub-sample. It is evident that much of the
short-range variation has been lost even though the variogram of the full data set was
used. This map is similar to that for the long-range component. The map of the low
frequency reconstruction, Figure 25, shows more of the short-range variation and
appears to be much more accurate visually than the kriged map. The maps of the
differences, Figures 26 and 27, appear to be similar overall, but closer examination
shows that the patches where the differences are large for kriging are more extensive
than those for the wavelet analysis. The values of the MSEs for kriging and the
wavelet analysis in Table 7 also suggest that kriging performs worse than wavelets.
The histograms, Figure 28 a (kriging) and b (wavelets), suggest that more of the
kriged values have smaller differences from the original values than those for the
wavelet reconstruction. However, the number of large errors is also greater for the
kriged values.

Sample of 1in 8

Figure 29 shows the result of kriging this sub-sample. It is evident that much more of
the detail in the variation has been lost. The pattern that is returned is coarse and no
longer reflects even the long-range component of the variation as accurately. Figure 30
for the low frequency reconstruction from the wavelet analysis also shows how the
detail has been lost. The maps of the differences, Figures 31 and 32 are again similar,
but as before where the differences are greatest for the kriged differences (Figure 30)
so their extent is also more extensive. It seems from the MSEs Table 7 that as the data
become more sparse and separated by greater distances that kriging loses power in
comparison with the wavelet analysis. The histograms, Figure 33 a (kriging) and b
(wavelets), suggest that the wavelet analysis has performed better with this sub-set of
the data. In the central part of the distribution there is little difference between the
differences for wavelet analysis and kriging, but there seem to be many more large
errors for kriging than the wavelets.
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Figure 25: Pixel map of the low frequency reconstruction from the wavelet analysis of
NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a resolution
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Figure 26: Pixel map of the comparisons between the kriged estimates for the 1 in 4
data with the original NIR values of part of the SPOT image (128 by 128 pixels) for

Fort A. P. Hill
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Figure 27: Pixel map of the comparisons between the low frequency wavelet
reconstructed values for the 1 in 4 data with the original NIR values of part of the
SPOT image (128 by 128 pixels) for Fort A. P. Hill




52

2 Kriged differences 1 in 4
8000 -

6000

Frequency
5

2000

0 ] ] [] [] [ i
~10-8-6-4-20 2 4 6 8 10
Kriged 1 in 4
b) . L
Wavelet differences 1 in 4
8000 -
6000 -

Frequency
S
S

2000

10-8-6-4-20 2 4 6§ 8 10
Wavelet 1 in

0
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Figure 29: Pixel map of the kriged estimates for the 1 in 8 sample of NIR of part of the

SPOT image (128 by 128 pixels) for Fort A. P. Hill
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Figure 30: Pixel map of the low frequency reconstruction from the wavelet analysis of
NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a resolution
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Figure 31: Pixel map of the comparisons between the kriged estimates for the 1 in 8
data with the original NIR values of part of the SPOT image (128 by 128 pixels): for
Fort A. P. Hill
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Figure 32: Pixel map of the comparisons between the low frequency wavelet
reconstructed values for the 1 in 8 data with the original NIR values of part of the
SPOT image (128 by 128 pixels) for Fort A. P. Hill
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Figure 33: Histograms of a) the kriged errors and b) the wavelet errors for the 1 in 8
sampling for NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill
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Summary

The histograms of the differences are perhaps the most illuminating part of this
analysis. It seems that we need to explore more, but that kriging performs well when
fewer data have been removed than the wavelet analysis. It also suggests that the end-
user can be provided with some insight to enable them to choose which is appropriate
for their needs. It seems that for the 1in 2 and lin 4 data sub-sets more of the errors are
small for kriging than for wavelets, but that the overall error is least for the wavelet
analysis. The latter is clearly more successful at retaining the transition features present
which kriging will not do well. Again what does the end user want?

Another thing that seems to emerge from this investigation is that the variogram could
be used to choose an optimal subset of the data, based on the distance between the
values. With the 1 in 2 sample both the long-range and short-range components of the
variation were restored as we should expect from the correlation structures in the
variogram: the distance between the pixels was less than the range of the short-range
component. With the 1 in 4 sample only the long-range structure is successfully
restored. If that is what is required then this can be chosen in a way that is driven by
the data using the variogram.

It is interesting to note that the means of the kriged reconstructed values, Table 7, are
close in each case to the mean of the original data, Table 5. The variances for the
kriged values decrease as the sampling intensity decreases and is evidence of the
smoothing of the variation that occurs with kriging. However, the variance of the
kriged values for the 1 in 2 sample is closer to the original variance than any of the
other analyses. The wavelet analysis retains the variance better as the sampling
intensity decreases. Geostatistical simulation would probably perform even better in
terms of retaining the variance in the data and this method should also be compared
with wavelet analysis in the future.




Table 7: Summary values from comparisons between the restored values and the
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original values using kriging and wavelets

Data Mean difference | Mean Mean of Variance of

sub-sets (error) squared error | reconstructed reconstructed
(MSE) values values

1in2 (K)

sub-sample -0.0698 28.361 117.76 235.64

1in4 (K) :

sub-sample -0.3017 87.122 117.53 196.97

1in 8 (K)

sub-sample 0.0627 159.78 117.89 114.20

1in2 (W)

sub-sample -0.0959 23.068 122.77 192.99

1in4 (W)

sub-sample 0.0000 67.860 117.83 210.13

1in8 (W)

sub-sample 0.0000 128.74 117.83 140.25
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Part IV: The analysis of the vegetation surveys and comparisons with the SPOT
data

Introduction

In this section the vegetation surveys and analyses will be described. It covers the
analysis of the quantitative data from surveys 1 and 2, some parts of these data sets
have been combined, and the qualitative data for surveys 2 and 4. The analysis of
survey 3 was included in the final report for the previous contract (Contract N68171-
97-C-9029).

Quantitative Surveys 1 and 2

Survey 1 was carried out in 1997 at A. P. Hill. The sample comprises several small
transects that have random starting positions within the seven strata of the training
areas. The plot size corresponded with the SPOT pixel size of 20 m by 20 m. The
points along the transects were at 100 m intervals (see Figure 34). This survey mainly
embraced either hard or soft woodland areas of vegetation. The second survey was a
square grid with an interval of 300 m covering the whole of our study site at A. P. Hill
(Figure 35). Since there were many sites without quantitative woodland information,
because it included grassland, buildings and hard standing, the sites with quantitative
information were analysed with the data from the first survey.

Sample 1 (170)
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Figure 34: Map of sites for Survey 1.
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Figure 35: Map of sites for Survey 2.

Exploratory data analysis

The summary statistics of the 17 quantitative variables were analysed for surveys 1 and
2 separately. They are given in Tables 8 and 9. The skewness values are generally small
showing that the statistical distribution does not depart seriously from normal, except
for stem spacing (survey 1). This variable had one extreme value which was removed to
obtain a near-normal distribution for the variogram analysis. Figures 36 and 37 show
the histograms of the variables listed below for survey 1. The digital numbers for the
three wavebands of the SPOT image that coincided with sites where the vegetation had
been examined were also extracted and their summary statistics are given in Table 10
for both surveys. Their histograms are shown in Figure 38.

Variables analysed and their abbreviation:

This part of the list contains those variables related to forest density (Set A):

maxce - maximum range of visual estimate of crown closure (%)
ovstmin - minimum range of overstory height (ft)
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ovstmax - mamimum range of overstory height (ft)

undstmn - minimum range of understory height ()

undstmx - maximum range of understory height (ft)

ba_f - estimate of basal area per hectare (metric units)

stem - total stems in plot (count)

ba_tot - sum of all basal area for each tree per plot (square metres)

stemsp - average minimum distance between stems within each plot (metres)

This part of the list contains those variables related to tree species (Set B):

ba_so - percentage of total basal area that is softwood in each plot

ba_ha - percentage of total basal area that is hardwood in each plot

stem_so - percentage of total number of stems that are softwood in each plot
stem_ha - percentage of total number of stems that are hardwood in each plot
bad_so - percentage of dominant basal area that is softwood in each plot
bad_ha - percentage of dominant basal area that is hardwood in each plot

stemd_so - percentage of dominant number of stems that are sofiwood in each plot
stemd_ha - percentage of dominant number of stems that are hardwood in each plot

Table 8: Summary statistics for vegetation measures for Survey 1

Variable | N  Missing Mean Median Min Max Variance Standard Skewness  Kurtosis
deviation

maxcc 169 1 67.04 70.0 0.0 100.0 5433 23.31 -1.22 043
minovst | 169 1 73.72 800 150 1100 395.1 19.88 -1.19 1.18
maxovst | 169 1 78.54 80.0 200 110.0 405.1 20.13 -1.32 1.29
minunst | 169 1 1135 100 0.0 30.0 333 5.77 0.96 231
maxunst | 169 1 20.66 200 0.0 35.0 62.2 7.89 -0.70 0.28
ba_f 168 1 3436 343 2.4 76.2 199.4 14.12 0.05 031
stem 169 1 20.44 190 0.0 81.0 112.9 10.62 1.96 7.01
bat_tot 169 1 1.07 1.1 0.0 24 0.2 045 0.01 0.31
stemsp 168 2 2.33 22 0.9 73 0.6 0.78 2.00 9.10
ba_so 168 2 46.16 435 0.0 1000 1487.1 38.56 0.13 -1.58
ba_ha 168 2 53.54 545 0.0 1000  1487.1 38.56 0.13 -1.58
stem _so | 138 2 41.01 333 00 1000 13389 36.59 0.33 -1.41
stem_ha | 168 2 58.99 66.7 0.0 100.0 13389 36.59 0.33 -1.41
bad_so 168 2 4894 46.7 00 1000 16103 40.13 0.06 -1.64
bad_ha 168 2 51.06 543 00 1000 16103 40.13 0.06 -1.64
Stemd_ | 168 2 49.14 488 0.0 1000 1570.7 39.63 0.02 -1.62
S0

Stemd_ | 168 2 50.86 512 0.0 1000  1570.7 39.63 0.02 -1.62
ha
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Table 9: Summary statistics for vegetation measures for Survey 2
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Variable | N Missing Mean Median Min Max Variance Standard Skewness  Kurtosis
deviation
maxcc 60 54 68.17 80.0 50 100.0 674.5 25.97 -0.99 -0.02
minovst 0 114 * * * * * * * *
maxovst | 60 54 73.75 80.0 20.0 100.0 3158 17.77 -1.32 1.52
minunst | 17 97 859 100 1.0 20.0 349 5.91 0.28 -1.07
maxunst | 54 60 15.11 150 3.0 25.0 23.9 4.89 -0.07 -0.31
ba_f 58 56 32.06 345 3.4 57.9 175.9 13.26 -0.35 -0.73
stem 58 56 1991 185 5.0 44.0 96.1 9.80 0.63 -0.29
bat_tot 58 56 1.07 11 0.1 18 0.17 0.42 -0.35 -0.73
stemsp 58 56 2.50 24 12 5.0 0.57 0.76 1.05 1.19
ba_so 58 56 5754 635 00 100.0 1360.3 36.88 -0.31 -1.46
ba_ha 58 56 4246 36.5 00 100.0 13603 36.88 -0.31 -1.46
stem_so | 58 56 5033 521 00 100.0 12884 35.89 -0.05 -1.53
stem_ha | 58 56 4967 479 0.0 1000 1288.4 35.89 -0.05 -1.53
bad_so 58 56 60.87 64.9 0.0 1000 14725 3837 -0.38 -1.43
bad_ha 58 56 39.14 351 00 100.0 14725 38.37 -0.38 -1.43
Stemd 58 56 60.15 71.8 00 1000 1520.1 38.99 -0.34 -1.52
so
Stemd 58 56 3993 28.2 0.0 1000 1520.1 38.99 -0.34 -1.52
ha

Table 10: Summary statistics for the three wavebands from the SPOT data for Surveys

land 2

Variable | N Missing  Mean Median Min Max Variance Standard Skewness  Kurtosis
deviation

Red (1) | 116 54 61.94 610 58.0 800 14.5 3.81 249 7.18

Green 116 54 36.33 340 320 670 33.56 5.79 3.17 11.71

2)

NIR (3) | 116 54 1193 1210 62.0 148.0 2495 15.79 -0.55 0.57
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Figure 38: Histograms of wavebands 1 (Red), 2 (Green), 3 (NIR) and NDVI for sites
coinciding with Surveys 1 and 2.

To assess which of these variables were likely to represent the variation the data most
strongly a principal components analysis was done on the correlation matrix. The latter
was used because it effectively standardizes the data. The first component accounted
for 53.7% of the variation and the second 18%. The variables that ‘loaded‘ most
heavily on the first component were:

ba_so, ba_ha, stem_so, stem_so, stem_ha, bad_so, bad_ha, stemd_so and stem_ha.
The variables that ‘loaded‘ most heavily on the second component were:

maxcc, ba_f, stem, ba_tot and stemsp.
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A set of variables that is considered to express the variation and summarise it
adequately is:

maxcc, ba_f, stem, stemsp, ovstmax, undstmx and ba_so.

These are based on the distribution of the variables in the plane of PC1 and PC2 (Figure

39).
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Figure 39: Plot of variables based on their loadings in the plane of PC1 and PC2.

Table 11 gives the correlations for the vegetation measures and the DNs of the
wavebands. In general these are small for the vegetation measures and DNs. Those for
NIR are the largest for maxcc, stem_so, ste_ha, stemd_so and stem_ha. There are some
strong correlations for the vegetation measure which are to be expected, for example
ba_so and ba_ha which add to 100%.
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Table 11. Correlations for the vegetation measures and the three wavebands from the
SPOT image.

*** Correlation matrix ***
bandl 1.000

band2 0.960 1.000
band3 ~-0.205 -0.308 1.000
cc 0.023 0.017 0.227 1.000
ovstmin 0.036 0.018 0.178 0.205 1.000
ovstmax 0.030 0.021 0.198 0.237 0.956 1.000
undstmn -0.148 -0.113 0.076 0.145 0.196 0.217 1.000
undstmx 0.073 0.080 0.099 0.260 0.427 0.487 0.515
ba_f£ 0.179 0.177 0.087 0.518 0.557 0.594 0.141
stem 0.081 0.098 -0.021 0.474 -0.346 -0.306 0.021
ba_tot 0.178 0.177 0.087 0.518 0.557 0.594 0.141
ba_so 0.005 ~0.005 ~0.182 -0.260 -0.596 -0.625 -0.014
ba_ha -0.005 0.005 0.182 0.260 0.596 0.625 0.014
stem_so 0.004 0.010 ~0.224 -0.230 -0.676 -0.687 -0.053
stem_ha -0.004 -0.010 0.224 0.230 0.676 0.687 0.053
bad_so 0.002 ~0.015 -0.158 -0.276 -0.541 -0.572 0.007
bad_ha -0.002 0.015 0.158 0.276 0.541 0.572 -0.007
stemd_so 0.000 -0.006 -0.211 -0.274 -0.547 ~0.568 0.009
stemd_ha 0.000 0.006 0.211 0.274 0.547 0.568 ~0.009
stemsp -0.007 -0.033 -0.030 -0.456 0.182 0.136 -0.015%
bandl band?2 band3 cc ovstmin ovstmax undstmn
undstmx 1.000
ba_f 0.396 1.000
stem -0.014 0.260 1.000
ba_tot 0.396 1.000 0.260 1.000
ba_so -0.146 -0.385 0.267 -0.385 1.000
ba_ha 0.146 0.385 -0.267 0.385 -1.000 1.000
stem_so -0.207 ~0.385 0.309 -0.385 0.941 -0.941 1.000
stem_ha 0.207 0.385 -0.309 0.385 -0.941 0.941 -1.000
bad_so -0.116 -0.376 0.243 -0.376  0.990 ~-0.990 0.894
bad_ha 0.116 0.376 -0.243 0.376 -0.990 0.990 -0.894
stemd_so -0.121 -0.349 0.269 ~0.349 0.972 -0.972 0.939
stemd_ha 0.121 0.349 -0.269 0.349 -0.972 0.972 ~0.939

1
o

stemsp -0.174 .302 -0.660 -0.302 -0.122 0.122 -0.189

undstmx ba_f stem ba_tot ba_so ba_ha stem_so

stem_ha 1.000
bad_so -0.894 1.000
bad_ha 0.894 -1.000 1.000
stemd_so -0.939 0.966 -0.966 1.000
stemd_ha 0.939 -0.966 0.966 -1.000 1.000
stemsp 0.189 -0.076 0.076 -0.137 0.137 1.000

stem_ha bad_so bad_ha stemd_so stemd_ha stemsp
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Variogram analysis

Experimental variograms were computed for all of the variables listed above for the
combined data from surveys 1 and 2. Variograms were computed in four directions at
the outset, but the number of sites is marginal for this. For set A variables the directions
of maximum and minimum variation are not consistent, but for set B variables the
variation in direction NNE to SSW (o) have the longest range of spatial dependence and
the largest sill variances and those at right angles have the shortest ranges and the
smaller sill variances (*) (Figures 40 and 41).

Figures 42 and 43 show the experimental omnidirectional variograms for the two sets of
variables from surveys 1 and 2. Those that show reasonable spatial structure are:
maxcc, ovstmin, ovstmax, undstmn, stem, ba_so, ba_ha, stem so, stem_ha, bad so,
bad_ha, stemd_so and stemd_ha. For the twin variables, such as ba_so and ba_ha the
variograms are identical for the reasons given earlier. The following variables were
modelled: maxcc, overstory height (derived from ovstmin and ovstmax), understory
height (derived from undstmn and undstmx), ba f, stem, stem spacing, ba so
(equivalent to ba_ha also), stem_so, bad_so and stemd_so. In addition the multivariate
variogram from this analysis was computed and modelled, also elevation, and the three
wavebands and NDVI. They are shown in Figures 44 to 47.

Table 12 gives the model parameters of the variables modelled. The experimental
variograms of many of the properties in Table 12 are somewhat erratic. This could be
related to the irregular sampling scheme. However, there appears to be some evidence
of periodicity in several variograms with wavelengths of between 500 m and 700 m. A
previous report that contained transects of the pixels to match the vegetation ones also
showed periodicity in the DNs. There appears to be some relation between the range of
spatial dependence of elevation and several of the vegetation measures. The multivariate
variogram has identified a short range component of variation of just over 300 m which
matches with the short range component of NIR. The variograms of the vegetation
classes are described later in this report. The models fitted to directional variograms of
ba_so are revealing: the variation in direction 135° is 462 m and that in direction 45° is
1271 m. This suggests that the different ranges might reflect some anisotropy in the
variation. This was identified in the image data, but because the sill heights were
different this signalled zonal anisotropy which cannot be corrected simply. It suggests
that there are distinct strata present and this is evident from the areas with different
kinds of vegetation. There are also distinct landscape units which will be explored in
the next report.
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Table 12. Variogram model parameters for the quantitative information from Surveys 1
and 2, and for elevation and the image information.

Variables Model ype Nugget  Sill Sill Range  Range
variance ¢, () a; (m) a,(m)

Canopy closure | Circular 379.1 2114 1707.0

Overstory height | Double 0 275.9 124.9 243.0 2034.0
spherical

Understory Circular 19.2 12.6 1391.0

height

Basal are (field) [ Spherical 69.9 126.5 232.0

Stem Pentaspherical  21.4 65.7 380.0

Stem spacing Circular 0.305 0.193 407.0

ba_so.ha Double 0 980.2 563.5 182.0 1553.0
spherical

ba_so/ha (45°) Circular 662.3 1271.0 1271.0

ba_so/ha (135°) | Circular 428.0 8414 462.0

stem_so/ha Spherical 892.7 8383 1428.0

bad_so/ha Spherical 909.1 819.9 1274.0

stemd_so/ha Circular 839.9 869.7 1432.0

Multivariate Circular 6.05 3.08 309.9

variogram

Elevation Circular 93.05 3125 1562.0

Red (1) Pentaspherical 221 17.89 906.0

Green (2) Double 0 20.6 19.7 386.0 1047.0
spherical

NIR (3) Circular 99.24 145.0 673.6

NDVI Double 0.0015 0.00307 0.00202 666.8 1261.0
spherical
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Figure 44: Experimental variograms and fitted models for Surveys 1 and 2.
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Cross variograms

The theory for computing cross variograms between two or more variables is given at
the beginning of the report. Cross variograms were computed between the vegetation
measures and the DNs from the three SPOT wavebands. Those selected and shown in
Figures 47 to 50 show some relation between the variables. For band 1 (Red) there is a
negative relation between maxcc, unstmn and stem, and a positive relation between
stem spacing (Figure 47). The relations with the other variables is not clear. For band 2
(Green) there are clear negative relations with maxcc and stem, and a positive relation
with stem spacing (Figure 48). For band 3 (NIR) there are positive relations between
maxcce, ovstmax, stem and ba_f, and a negative relation with ba_so (Figure 49). Cross
variograms with elevation are give in Figure 50. Overall their relations with the
vegetation measures are weak.
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Figure 47: Cross experimental variograms between band 1 (Red) and selected
vegetation measures for Surveys 1 and 2..
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The analysis of the qualitative data for Surveys 2 and 4

In addition to the measured values for the woodland areas, Surveys 2, 3 and 4 also
described the vegetation in categories or classes. The distribution of the sites for all of
the ground cover surveys is given in Figure 51, and that for Survey 4 alone in Figure
52. The sampling scheme for Survey 4 was along a series of transects with a sampling
interval of 10 m. This survey was confined to a smaller area than the transects of
Survey 3 which had a 50 m sampling interval.

In the original classification of these data there were several classes with few sites.
Therefore, as for Survey 3 described in the previous final report (Contract N68171-97-
C-9029), the number of classes was reduced. The original and new classes are given in
Table 13. For Survey 2 there were 114 sampling points and for Survey 4 there were
321 points. Figure 53 shows the spatial distribution of the eight classes in relation to
the sampling points for Survey 2 and Figure 54 shows their distribution for Survey 4.
Some sites had a mixture of ground cover, for example grass/low bushes, and these
were eliminated from the analysis. For Survey 2, 19 sites were excluded and so the
variogram analyses were carried out using the remaining 95 sites. For Survey 4, 71
sites were excluded leaving 250 sites for the analysis. Table 14 summarises the
contents of the classes.

All 4 samples
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Figure 51: Map of sites for the four ground cover surveys.
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Table 13: Reclassification of the classes of ground cover for sites Surveys 2 and 4.

Sample 2

Manmade
Building/Asphalt
Buildings
Campgrnd-like
Site

Gravel Parking
Lot

Powerline Grass
Private-Landfill
Road/Grass

Grass
Grass

Grass Field
Grass Field
Tall Grass

Oak
Oak

Hard Mix
Hard Mix
Oak Mix
Poplar

Mixed_For.
Mixed_For.

Pine

Pine
Plantation
Young Pine
Private-Pine

Wetland
Wetland
Private-Wetland
Wetland

w/Waterways

Excluded
Grass/Cemetery

Grass/Edge of
Mixed

Grass/Houses
Grass/Low Bushes
Grass/Rd/Bldg
Grass/Road
Lake
Maple/Pine
Oak/Holly
Qak/Pine
Pine/Maple
Pine/Mix
Pine/Plantation
Marshy Wetland
Private-Mix
Private-Mixed

Sample 4

Manmade works
Asphalt
Asphalt/Grass
Asphalt/Grass/Soi
1

Concrete
roof-Asphalt

Field
Field

Grass
Grass

Grass (Tall)
Tall Grass

Hardwood
Hardwood
Forest (H)

Mixed Forest
Pine/Hardwood
Pine/HW
Forest (M)

Pine
Pine
Forest (P)

Forest
Forest

Shrub/Scrub/We
tland
Shrub/Scrub/Wetl
and

Excluded
Edge Field/Forest
Edge/Field

Field/Gravel Road

For Dist (M)
For/Tall Grass

Forest (Wet/Dry)
Forest Disturbed

Forest/Grass
Forest/Road
Forest/Scrub
Forest/Tall Grass
Grass/Asphalt
Grass/Asphalt/Ce
ment
Grass/Conifer
Grass/Dirt
Grass/Forest
Grass/HW
Grass/Soil
HW/Marsh
Marsh/HW
Pine/Brush
Pine/Grass
Pine/Hard/Shrub
Pine/HW/Marsh
Pine/Shrub
Shrub/Scrub
ShrubScrub/Forest
Tall Grass/Field
Wet Forest/HW
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Table 14: Summary of ground cover classes for sites Surveys 2 and 4.

Survey 2 Survey 4

Ground Cover Class Number of samples Ground Cover Class Number of samples
Manmade 11 Manmade works 20
Grass 16 Field 5
Grass field 3 Grass 71
Oak 3 Hardwood 24
Hard Mixed Forest 12 Mixed Forest 32
Mixed Forest 8 Pine 11
Pine 34 Forest 76
Wetland 8 Shrub/scrub/wetland 11
Excluded 19 Excluded 71

Total sites 114 Total sites 321

4217600 -

42174001

4217200

4217000 -

4216800

4216600

4216400

4216200

4216000

Sample 4 (321)

AN

294600 294800 295000 295200 295400 295600 295800 296000 296200

Figure 52: Map of sites for Survey 4.
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Variogram analysis of categorical data for Survey 2

Experimental variograms were computed for each of the eight ground cover classes,
Figure 55. The ones that show clear structure are for the categories: manmade, grass,
oak, pine and wetland. Considering the small sample size the evident structure in these
suggests that there are distinct areas of ground cover type that can be identified with
relatively little sampling effort. The variogram for oak appears to have a nested
structure. These variograms have not been modelled at present, but this could be done
in the next phase of work. From the graphs the average range of spatial dependence is
about 600 m. This fits in well with the long range component of the variation in NIR
for the original part of the SPOT image analysed, Table 15.

The experimental multivariate variogram based on the classes was computed. This
analysis summarises the average rate of change from one class of ground cover to
another. Figure 56 shows the experimental variogram with the fitted model. The
variogram has a large nugget variance because there were relatively few sites and the
sample spacing of 300 m was large. The variation that has not been detected in the
change from one type of ground cover to another is embraced by the nugget variance.
The variogram model was a single structure with a range of spatial dependence of 575
m (Table 15). This corresponds closely with the long-range structure identified in the
nested variogram of NIR computed from the original part of the SPOT image that was
analysed. This was slightly larger than the area used for the wavelet analysis (Part II of
this report). The variogram of this waveband was fitted by a nested spherical model
with a short range component of 120 m and a long range component of 542 m (Table
15). It is evident that the spectral information is identifying the major changes in the
different kinds of ground cover.

Table 15. Variogram model parameters for the wavebands in the original SPOT image
and the qualitative information from Surveys 2 and 4.

Variables Model type Nugget  Sill Sill Range  Range
variance ¢; c2 a; (m) ay(m)

Red - average Double 0.4661

spherical 8.080 18.432 16556 51894
Green - average | Double

spherical 2.026 16.568 28437 22432 650.48
NIR- average Double

spherical 0.0 151.39 118.87 120.56 542.22
NDVI- average | Double

spherical 0.0 0.0343 0.0138 139.74 643.35
Ground cover 2 | Circular 0.431 0.283 575.0
Ground cover 4 | Double

spherical 0.112 0.307 0.328 67.0 689.0
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Figure 53: Distribution of sites for each category of ground cover for Survey 2.
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Figure 54: Distribution of sites for each category of ground cover for Survey 4.
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Multivariate variogram of classes in Sample 2
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Figure 56: Experimental multivariate variogram (symbols) based on the ground cover
classes for Survey 2 and the fitted model (solid line).

Cross variograms were computed as before between the ground cover classes and each
of the three wavebands. Figures 57 to 59 show the cross variograms for Survey 2.
Those for wavebands 1 and 2 are similar. For the Red waveband (1) manmade, grass,
oak, hard mixed forest, mixed forest, pine and wetland show evidence of
coregionalization with it. The strength of this cannot be judged at present until they
have been modelled. The coregionalization for the Green waveband (2) is as above,
except for grass. For NIR (3) the coregionalization is between oak, hard mixed forest,
mixed forest and wetland. The relations for the two grass categories and pine are not
strong.
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Variogram analysis of categorical data for Survey 2

Experimental variograms were computed for each of the eight ground cover classes to
a maximum lag of 400 m, Figure 60 and 1000 m, Figure 61. They are more erratic than
the ones for Survey 2, which is surprising considering the large number of sampling
points. However, the behaviour of the variograms probably reflects the fact that the
categories of ground cover repeat themselves along the transects, this would cause the
waviness that is apparent in many of them. The variograms all show clear structure,
especially over a short distance of about 100 m. The average range of these
variograms, based on where they start to flatten, is about 145 m. This relates closely to
the short range component of the variation in NIR for the original part of the SPOT
image analysed, Table 15. These variograms could be modelled in the next phase of
the work.

The experimental multivariate variogram based on the classes was computed as before,
Figure 62. The fitted model is the solid line the figure. The variogram was fitted best
by a nested spherical model with a short-range structure of 67 m and long-range one of
689 m. However, the appearance of the experimental variogram suggests that the
short- range component should be at about 150m to 175 m. Several attempts have
been made to fit a better model, but the erratic nature of the experimental
semivariances has prevented this. This variogram mirrors the form of that for NIR
closely in spite of the fact that the model parameters are different for the short-range
component.

Cross variograms were computed as before between the ground cover classes and each
of the three wavebands. Figures 63 to 65 show the cross variograms for Survey 4.
Those for the Red and Green wavebands are similar. The coregionalization appears to
be weaker for this analysis, but this could be related to the complex nature of the
individual variograms. The variables that show the strongest relation with wavebands 1
and 2 are manmade, field, grass, forest and wetland. For NIR (waveband 3) the
strongest relations are with manmade, hardwood, mixed forest, pine, forest and
wetland.

Cross variograms were also computed between the ground cover categories and
elevation. The strongest relations are with field, mixed forest, forest and wetland. In
the previous final report we commented on the fact that the patterns in the long-range
component of the variation, in particular, appeared to have a strong relation with the
physiography. These results appear to confirm this.
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Figure 60: Experimental variograms of the ground cover classes for Survey 4
computed to a maximum lag of 400 m.
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Figure 61: Experimental variograms of the ground cover classes for Survey 4
computed to a maximum lag of 1000 m.
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Summary of vegetation analysis

The results of the ground cover analyses suggest that there are distinct spatial patterns
in the variation: a short-range one related to local changes in cover of about 150 m
extent and a longer range one of about 550 m in extent. They relate to the patterns
observed in the imagery, in particular for the NIR waveband.

Multivariate variogram of classes in Sample 4

0.9

0 20 400 0 80 1000
Log distance / m

Figure 62: Experimental multivariate variogram (symbols) based on the ground cover
classes for Survey 4 and the fitted model (solid line).
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Figure 63: Cross experimental variograms between band 1 (Red) and the ground cover
classes for Survey 4.
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Figure 64: Cross experimental variograms between band 2 (Green) and the ground
cover classes for Survey 4.
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Figure 65: Cross experimental variograms between band 3 (NIR) and the ground
cover classes for Survey 4.
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Digital Elevation Analysis

Digital elevation information for A. P. Hill was provided for most of the area of the
SPOT image that we have been working with. Part of the southwestern corner is
missing because this are is beyond the confines of the base. The data were on a 5 m
grid. Table 16 gives the summary statistics of the elevation data. Variograms were
computed along the rows and columns of the grid and the average variogram was also
estimated. Figure 67 shows the variograms. They all have a concave upward slope near
to the origin which suggest that local trend or drift might be present. This is common
for elevation data. '

Table 16: Summary statistics for Elevation

Elevation
Number of 26878
observations
Minimum 155.0
Maximum 232.0
Mean 198.15
Variance , 234.88
Standard deviation 15.33
Skewness -0.5499

To assess whether the local trend could be removed by a coarser sampling interval the
data were sampled to produce a 20 m grid. This corresponded with the information
from the SPOT image with a pixel size of 20 m by 20 m. The variograms from these
data now show no evidence of local trend, but there is evidence of regional trend, i.e.
the variograms start to rise after an initial sill has been reached at about a lag distance of
800 m, Figure 68. The amount of trend present was determined by fitting linear,
quadratic and cubic functions to the coordinates of these data. The linear function
accounted for 17% of the trend, the quadratic 22% and the cubic 31%. Variograms
were computed from the residuals to these trend functions. Figure 69 shows the
variograms computed from the residuals of the linear trend. They show clearly that the
regional trend has been removed. The variograms computed from the residuals of the
quadratic trend, Figure 70, are similar, as are those for the cubic residuals, Figure 71.
The variogram that is most different is the one for the columns in Figure 71 (cubic).
This emphasises the possibility of some periodicity in the N-S direction. Table 17 gives
the parameters of the models fitted to the average variograms. The model for the raw
data was fitted to a lag of 600 m only because thereon the variogram continues to
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rise. A single pentaspherical model provided the best fit. The model has a range of
578 m which relates closely to the long-range component in the image. The variograms
of the residuals were all fitted best by nested spherical models, Table 17. Their ranges
do not correspond as closely with image data as the vegetation does. The short-range
component of about 220 m is similar to that of the Green waveband (2) and the long-
range one of about 1000 m is similar to that fitted to the rows of NDVL

Table 17. Variogram model parameters for elevation on a 20 m grid for A. P. Hill.

Variables Model type Nugget  Sill Sill Range  Range
variance C; c a;(m) a(m)

Raw elevation | Pentaspherical

data 0 162.1 578.0

Residuals from | Double

linear trend spherical 0 19.7 8.9 2350  927.0

Residuals from | Double

quadratic trend | spherical 0 18.7 14.1 220.0  906.0

Residuals from | Double

Cubic trend spherical ' 0 26.4 9.5 2632 1363.0

The other aspect of these variograms is that there is more variation along the columns
than the rows. This was also detected in the variograms of the SPOT data. Since the
directional variation results in different sill heights we did not correct for it as this kind
of anisotropy (zonal) requires stratification. Figure 72 shows that the two directional
variograms overlap near to the origin which is the important point for kriging. It means
that the kriged estimates will not be affected by the directional difference at the longer

lag distances.

J
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Figure 67: Experimental variograms of elevation for the rows and columns of a 5 m
grid, and the average variogram of these for A. P. Hill.
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Figure 68: Experimental variograms of elevation for the rows and columns of a 20 m
grid, and the average variogram of these for A. P. Hill.
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DEM 20m. Linear trend.
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.Figure 69: Experimental variograms of elevation for the rows and columns of a 20 m
grid, and the average variogram of these computed from the residuals of a linear trend,
and the fitted models (solid lines).
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DEM 20m. Quadratic trend.
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Figure 70: Experimental variograms of elevation for the rows and columns of a 20 m
grid, and the average variogram of these computed from the residuals of a quadratic
trend, and the fitted models (solid lines).
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DEM 20m. Cubic trend.
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Figure 71: Experimental variograms of elevation for the rows and columns of a 20 m
grid, and the average variogram of these computed from the residuals of a cubic trend,

and the fitted models (solid lines).
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Figure 72: Experimental variograms of elevation for the rows and columns of a 20 m
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We decided to do the factorial kriging on the raw data and on the residuals from the
quadratic trend. Figure 73 shows the experimental variogram and the model fitted to the
average variogram of the quadratic residuals. Figures 74 and 75 show the kriged maps
of the raw elevation data and that computed using the residuals from the quadratic’
trend, respectively. They are very similar, but the one for the residuals shows slightly
more detail. The trend function that has been removed varies very smoothly and this has
reduced the apparent variation in Figure 73. The strange pattern in the southwestern
corner is the result of missing data in this region.

Figures 76 and 77 show the maps of the long-range component of the variation for the
raw data and that from the quadratic residuals. The patterns that are evident are similar.
It is interesting to compare these Figures with Figure 80, the long range component of
NIR. The large valley that extends from the SW then E and then changes direction to
the N E corresponds with the yellow area in Figure 80. The tributary valley that extends
N from the major valley at about Easting 295500 (Figure 77) is also evident in Figure

- 80 as the orange area. The other valley system to the NW which runs in and E to W

direction is also evident in both Figures 77 and 80. The reddish areas on the map of the
long range component for NIR were interpreted as higher ground in a previous report
and this is confirmed now in the maps of the DEM.

Figures 78 and 79 show the maps of the short range component of the variation for the
raw data and that from the quadratic residuals. The patterns are almost identical. These
correspond to the local variation in relief that is evident on the ordnance map for this
area. The intricacy of the valley systems and general dissection is very clear in these
maps. Again it is interesting to compare these with the short range component of NIR,
Figure 81. A similar degree of detail and spatial scale is evident in all of the short-range
maps.

If trend is present in data it should be removed for a geostatistical analysis. In this case
it has affected the form of the variograms, but it appears to have had little effect on the
spatial patterns observed after kriging both raw and residual data.

The relation between elevation and NIR was mentioned above. This was examined
further by computing the cross variogram between them. Figure 80 shows the
autovariograms for elevation and NIR together with their cross variogram. The outer
dotted lines on the cross variogram show the hull of perfect correlation. It shows that
although there is a relation between the image information and elevation it is weak.
Visually it is more convincing. This result will be explored further in the next phase of
work when we shall analyse a smaller part of the image.
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DEM (20m). Quadratic trend.

40 -
351
byt
25 4

20 -

Varionce

0 200 400 600 800 1000 1200
Lag distonce / m

Figure 73: Average experimental variogram of elevation for the 20 m grid computed
from the residuals of a quadratic trend, and the fitted models (solid line).
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"o Kriged map of 20m DEM for A. P. Hill
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Figure 74: Kriged map of the raw elevation data on the 20 m grid for A. P. Hill.
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"o Kriged map from residuals of 20m DEM
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Figure 75: Kriged map of the residuals from a quadratic trend of elevation on the 20 m
grid A. P. Hill.
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Long range component for 20m DEM
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Figure 76: Kriged map of the long range component of the variation for the raw

elevation data on the 20 m grid for A. P. Hill.
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Long range component from residuals of 20m DEM
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Figure 77: Kriged map of the long range component of the variation for the residuals
from a quadratic trend of elevation on the 20 m grid A. P. Hill
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Figure 78: Kriged map of the short range component of the variation for the raw
elevation data on the 20 m grid for A. P. Hill.
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"9 Short range component of 20m DEM for A. P. Hill
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Figure 79: Kriged map of the short range component of the variation for the residuals
from a quadratic trend of elevation on the 20 m grid A. P. Hill.
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Long-range kriged estimates for NIR
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Figure 80: Kriged map of the long range component of the variation for NIR.
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Short-range kriged estimates for NIR

175 4

¢ g

150

125

100

75

25

25 50 75 100 125

Figure 81: Kriged map of the short range component of the variation for NIR.
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Appendix 11

Wavelets and Kriging for Filtering and Data Reconstruction

M. A. OLIVER', E. BOSCH? and K. SLOCUM?

'Department of Soil Science, The University of Reading, Whiteknights, Reading
RG6 6DW, UK, v

2US Topograhic Engineering Center, 7701 Tt elegraph Road, Alexandria, Virginia
22310-3864, U. S. A.

Abstract

Wavelet analysis operates locally and can describe a wide range of frequencies
simultaneously and filter them by multi-resolution analysis. Kriging analysis also filters
spatial variation at different resolutions. We compare the effectiveness of wavelets and
factorial kriging for exploring nested variation in a SPOT image. In addition both
wavelets and kriging can be used to restore image data after compression. We compare
the reliability of the restorations from the two approaches.

The near infrared (NIR) waveband of part of a SPOT image covering Fort A. P _Hill
in Virginia was used for these analyses. The region is on the dissected Piedmont area
of the eastern United States. An area of 128 by 128 pixels was selected from the scene
for analysis. The experimental variogram was computed and modelled by a nested
spherical function with correlation structures of about 6.5 pixels and 21 pixels. The
variogram and factorial kriging separated the two main spatial features present. The
low-frequency component from the wavelet analysis contained the spatial structure.
The long-range component became evident as the resolution decreased. The high-
frequency components removed only the uncorrelated variation and we could not
retrieve the short-range component.

The image was sampled so that one in every four pixels was retained, one in every 16
and one in every 64. Using the variogram model for the full set of data values were
estimated at the former data points by ordinary kriging. The low-frequency wavelet
transform for these resolutions was inverted so that the missing values were restored.
The restored values from both analyses were compared with the original values and the
mean squared differences (MSD) computed. For all resolutions the MSD was smaller
for the wavelet reconstruction. However, the MSD proved somewhat misleading when
frequency distributions of the errors were compared. They suggested that wavelets are
more able to deal with the local fluctuations present in the image and with local non-
stationarity than kriging, but that for the majority of points the kriged estimates have a
smaller error. '

The paper will be illustrated with maps of the results, and we shall suggest
improvements for restoring images by kriging.




Appendix III
4C **%x* DPROGRAM TO COMPUTE VARIOGRAMS FOR SQUARES OF VARIOUS SIZES

*%%* R WEBSTER ROTHAMSTED
Latest version 22 July 1999

This program was written as part of US project
and may be handed over to TEC.

Program reads data on a grid with X and Y coordinates
and converts them to an array for the selected variate
with implied coordinates.

It tiles the grid into non-overlapping squares of
given side. Any points to the bottom or right
of the grid left over play no role.

NN N

DIMENSION ZK(190,189), ZA(30), GRID(30,30)
*%%x*% ZK( , ) will hold grid of data.
character*72 TITLE(2)
character*72 INFILE, OP12, IN11, FDAT
data MAXROW, MAXCOL/190,189/
data IN, INDAT,LP/10,11,12/
PRINT * , 'WHAT IS THE NAME OF THE STEERING FILE ?'
READ (5,'(A)') INFILE
OPEN (INDAT,FILE=INFILE,STATUS='0OLD')
print * , 'WHAT IS THE NAME OF THE DATA FILE ? '
read (5,'(a)') IN11
open (IN,file=IN11,status='0OLD')
PRINT *, 'WHAT DO YOU WANT TO CALL THE MAIN OUTPUT FILE ?'
READ (5,'(A)!') OP12
OPEN (LP,FILE=0P12,STATUS='NEW')
PRINT *, 'WHAT DO YOU WANT TO CALL THE SECOND RESULTS FILE ?!
READ (5 '(A) ') OP1l2
OPEN (LF8,FILE=0OP12,STATUS='NEW')
READ (INDAT,10) TITLE
WRITE (LP,10) TITLE
Cc WRITE (LF8,12) TITLE
10 FORMAT (A)
NVAR int (CYNPUT (INDAT) +0.1)
NSEL int (CYNPUT (INDAT) +0.1)
MSIDE int (CYNPUT (INDAT) +0.1)
MAXTLAG= int (CYNPUT (INDAT) +0.1)
ZMIS CYNPUT (INDAT)
IL.OG int (CYNPUT (INDAT) +0.1)
if (ILOG.eqg.l) SHIFT=CYNPUT (INDAT)
**%*%* NVAR is number of variates in file.
NSEL is the one selected for analysis.
MSIDE is the side of the square within which
averages are computed.
MAXLAG is the maximum lag distance of variograms
ZMIS is the value used for missing or blank.
ILOG = 1 to transform to log to base 10.
SHIFT is a value to be added to data to shift the origin
. before taking logarithms.
**%* Set data grid to blank
if (ILOG.eq.l) ZMIS=logl0 (ZMIS)
do 20 I=1,MAXROW
do 20 J=1,MAXCOL
ZK(I,J)=ZMIS-10000.0
20 continue
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C
read (INDAT,10) FDAT
C **** Read the data.
35 NC=0




NROW=0
NCOL=0
36 NC=NC+1 '
read (IN,FDAT,end=45) ICOL, IROW, (ZA(J), J=1,NVAR)
if (ICOL.gt.MAXCOL) then
write (LP,38) ICOL
stop
endif
if (IROW.gt.MAXROW) then
write (LP,39) IROW

stop
endif
38 format (/10x,'ICOL exceeds array bound'//)
39 format (/10x,'IROW exceeds array bound'//)

if (NROW.lt.IROW) NROW=IROW
if (NCOL.1lt.ICOL) NCOL=ICOL
ZL=ZA (NSEL)
if (ILOG.eq.1l) then
if (2L.gt.0.01) then
ZL=10g1l0 (ZL+SHIFT)

else
ZL=7ZMIS-100000.0
endif
endif
ZK (IROW, ICOL) =ZL
goto 36
45 continue
NC=NC-1
write (LP,47) NC, NROW, NCOL
47 format(// 10x, 'Number of data v,i10/
1 10x, 'Number of rows 1,i10/
2 10x, 'Number of columns v,i10/)

if (ILOG.eqg.l) write (LP, 51) SHIFT
51 format (/10x, 'DATA TRANSFORMED TO LOG TO BASE 10'/
1 10x, 'SHIFT ', F10.3/)
ZMAX=-99999999
ZMIN=999999999
NN=NC
ZBAR=0.0
SSQ=0.0
COUNT=0.0
do 54 I=1,NROW
do 53 J=1,NCOL
27Z=2K(I,J)
if (zZ.le.ZMIS) goto 53
if (zMAX.1lt.ZZ) ZMAX=ZZ
if (ZMIN.gt.Zz) ZMIN=ZZ
DIF=ZZ-ZBAR
COUNT=COUNT+1.0
ZBAR=ZBAR+DIF/COUNT
SS0=8SQ+(1.0-1.0/COUNT) *DIF*DIF
53 continue
54 CONTINUE
A3=0.0
do 57 I=1,NROW
do 56 J=1,NCOL
772=7K(I,J)
if (2Z.le.ZMIS) goto 56
A3=A3+ (ZZ-ZBAR) **3
56 continue
57 CONTINUE
A2=SSQ/COUNT
A3=(A3/COUNT) / (A2*sqrt (A2))
VAR=SSQ/ (COUNT-1.0)




STD=sqrt (VAR)

write (LP, 58) COUNT ZMIN, ZMAX, ZBAR, VAR, STD, A3
58 format (//,10X, Count 1, f10. 1/

1 10x, ' Minimum v,£10.4/

1 10x, ' Maximum ! f10.4/

1 10x, ' Mean 1, £10.4/

2 10x, ' Variance v,f12.6/

3 10x, ' Standard deviation ',£10.4/

4 10x, ' Skewness v, £10.4/)

c

C **** Compute starting in top left corner of grid.
NTILER=int (NROW/MSIDE)
NTILEC=int (NCOL/MSIDE)

do 300 IR=1,NTILER
IRS=(IR-1)*MSIDE+1
IRE=IR*MSIDE
do 300 IC=1,NTILEC
ICS=(IC-1)*MSIDE+1
ICE=IC*MSIDE
IT=0
do 210 I=IRS,IRE
JJ=0
IT=IT+1
do 210 J=ICS,ICE
JJI=JJ+1
GRID(II,JJ)=2K(I,J)
210 continue
C **** Data are now transferred into array GRID( , ) covering
C a small square of side MSIDE.
Cc Initialize accumulators.
do 220 I=1, MAXLAG
WLAG(I)
GAM(I) =0
WT(I)=0. 0
SUM=0.0
$S8Q=0.0
COUNT=0.0
220 continue
do 225 I=1,MSIDE
do 225 J=1,MSIDE
ZZ=GRID(I,J)
if (2z.1t.2ZMIS) goto 225
COUNT=COUNT+1.0
DIF=ZZ-SUM
SUM=SUM+DIF/COUNT
SSQ=S8Q+(1.0-1.0/COUNT) *DIF*DIF
225 continue
SSQ=SSQ/ (COUNT-1.0)
SDV=sqgrt (SSQ)

write (LP, 227) IRS, ICS, SUM, SSQ, SDV

227 format (//5X, 'CORDINATES v, 16,16/
1 5X, 'MEAN ', F12.5/
2 5X, 'VARIANCE 1, Fi12.5/
3 5X, 'ST. DEVIATION ', F12.5/)
write (LP,230)
230 format (/2x, 'LAG ANGLE SEMIVARIANCE COUNT'/)

do 255 I=1,MSIDE
do 255 J=1,MSIDE
Z1=GRID(I,J)
if (21.1t.ZMIS) goto 255
do 245 K=1,MSIDE
do 245 L=1,MSIDE
72=GRID (K, L)




if (22.1t.ZMIS) goto 245
X1=float (I)
X2=Ffloat (K)
Yi=float (J)
Y2=Ffloat (L)
D=sqrt((Xl—X2)**2+(Y1—Y2)**2)
LAG=int (D) +1
WLAG (LAG) =WLAG (LAG) +D
GAM (LAG) =LAG (LAG) + (Z21-22) **2
WT (LAG) =WT (LAG) +1.0
245 continue
255 continue
ANGLE=0.0
do 270 I=1,MAXLAG
WLAG (I) =WLAG (I) /WT(I)
GAM(I):O.S*GAM(I)/WT(I)
write (LP,275) WLAG(I),ANGLE,GAM(I),WT(I)
270 continue
275 format (2x,f7.2,f6.2,£12.5,£10.1)
300 continue
stop
end
C
FUNCTION CYNPUT (IN)
C **** READS A REAL NUMBER FROM AN 80-BYTE RECORD IN FREE FORMAT
DIMENSION K(80),NUM(10)
DATA NUM/lHO,lHl,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9/
DATA INOLD,N,IFL,NPLUS,MINUS,NDOT/O,81,0,1H+,lH—,lH./
CYNPUT=-0.0
IF (INOLD.EQ.IN.AND. N.LE.80) GOTO 20
5 IF(IFL.NE.O) RETURN
INOLD=IN
READ (IN,10) (X(I),I=1,80)
10 FORMAT (80A1)
15 N=1
20 IF(N.GT.80) GOTO 35
DO 30 I=N,80
II=K(I)
DO 25 J=1,10
IF(II.EQ.NUM(J)) GOTO 40
25 CONTINUE
IF(II.EQ.MINUS) GOTO 40
IF(II.EQ.NDOT) GOTO 40
IF(II.EQ.NPLUS) GOTO 40
30 CONTINUE
35 GOTO 5
40 SIGN=1.0
IF(II.EQ.MINUS) SIGN=-1.0
IF(II.EQ.MINUS .OR. II.EQ.NPLUS) I=I+1
IF(I.GT.80) GOTO 60
DO 55 N=TI,80
NN=K (N)
IF (NN.EQ.NDOT)GOTO 70
DO 45 J=1,10
KK=J-1
. IF(NN.EQ.NUM(J)) GOTO 50
45 CONTINUE
GOTO 65
50 CYNPUT=10.0*CYNPUT+KK
55 CONTINUE
60 N=82
65 CYNPUT=SIGN*CYNPUT
RETURN
70 I=N+1
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TENS=1.0
IF(I.GT.80) GOTO 90
DO 85 N=I,80
NN=K (N)
DO 75 J=1,10
KK=J-1
IF (NN.EQ.NUM(J)) GOTO 80
75 CONTINUE
GOTO 65
80 TENS=TENS*0.1
CYNPUT=CYNPUT+TENS*KK
85 CONTINUE
90 N=82
GOTO 65
END
#4C **** DPROGRAM TO COMPUTE MOVING VARIANCES FOR SQUARES
OF VARIOUS SIZES
*%%% R WEBSTER ROTHAMSTED
Latest version 22 July 1999

This program was written as part of US project
and may be handed over to TEC.

Program reads data on a grid with X and Y coordinates
and converts them to an array for the selected variate
with implied coordinates.

DIMENSION ZK(190,189), ZA(30), vM(190,189), AM(190,189)
*x*x% ZK( , ) will hold grid of data.
character*72 TITLE(2)
character*72 INFILE, OP12, INl1l, FDAT
data MAXROW, MAXCOL/190,189/
data IN,INDAT,LP/lO,ll,lZ/
PRINT * , 'WHAT IS THE NAME OF THE STEERING FILE ?'
READ (5,'(A)') INFILE :
OPEN (INDAT,FILE:INFILE,STATUS='OLD')
print * , 'WHAT IS THE NAME OF THE DATA FILE ? '
read (5,'(a)') IN1ll
open (IN,file=IN11, status='0OLD"')
PRINT *, 'WHAT DO YOU WANT TO CALL THE MAIN OUTPUT FILE ?'
READ (5,'(A)') OP12
OPEN (LP,FILE=OP12;STATUS='NEW')
PRINT *, 'WHAT DO YOU WANT TO CALL THE SECOND RESULTS FILE ?'
READ (5,'(A)') OP1l2
OPEN (LF8,FILE=OP12,STATUS='NEW')
READ (INDAT,10) TITLE
WRITE (LP,10) TITLE
C WRITE (LF8,12) TITLE
10 FORMAT (A)
NVAR int (CYNPUT (INDAT) +0.1)
NSEL int (CYNPUT (INDAT) +0.1)
MSIDE int (CYNPUT (INDAT) +0.1) :
ZMIS CYNPUT (INDAT) i
ILOG int (CYNPUT (INDAT) +0.1)
if (ILOG.eq.l) SHIFT=CYNPUT (INDAT)
*%%% NVAR is number of variates in file.
NSEL is the one selected for analysis.
MSIDE is the side of the square within which
averages are computed.
ZMIS is the value used for missing or blank.
ILOG = 1 to transform to log to base 10. o
SHIFT is a value to be added to data to shift the origin
before taking logarithms.
*%*x* Set data grid to blank
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